Jan Vavro
Jan Vavro jr.

Analysis and synthesis of planar
mechanisms




Authors: prof. Ing. Jan Vavro, CSc., doc. Ing. Jan Vavro, PhD.

Authors workplace: Faculty of Industrial Technologies, Alexander Dubéek University of Trencin,
I. Krasku 491/30, 020 01 Puchov, Slovak Republic, fpt.tnuni.sk

e-mails: jan.vavro@tnuni.sk, jan.vavro.jr@tnuni.sk,

Analysis and synthesis of planar
mechanisms

Reviewers:

prof. Ing. Jozef Bocko, CSc. — Technical University of KoSice
prof. Dr. Ing. Milan Saga — University of Zilina

prof. Ing. AlZbeta Sapietova, PhD. — University of Zilina

Number of printed copies: 100 p.

Publisher: Krmela Jan, Zborov 32, 789 01 Zabieh, Czech Republic

ISBN 978-80-908447-1-1

Scientific monograph was elaborated due to financial grant of the Ministry of
Education, Science, Research and Sport of the Slovak Republic within the
framework of the KEGA project (project number — 011TnUAD-4/2021): “The
implementation of the progressive methods of analysis and synthesis of mechanical
systems in the educational process”.



CONTENT

INEFOTUCTION ...ttt bbbttt 5
1 Computational Modeling of Planar Solid Body Systems.........c.ccccevvvvvvnnenne. 7
1.1 Numerical Methods in Continuum MecChaniCs..........ccovererinieiinininieien 9
2 Introduction to the Finite Element Method (FEM) ..o, 12
2.1 Linear Analysis Of StatiC TasKS ........cccccevveiiiiiciicce e 13
2.2 Modeling with Four-node Tetrahedral Space Elements...........cc.ccocvviiennne. 16
3 Kinematic Analysis of Planar Solid Body Systems..........c.cccocvvevevieivennene. 21
3.1 Basic Concepts and Fundamental Terms..........cccoovvveiiienenencnenesieen 21
3.2 Classification of Solid Body Systems (Mechanisms)............ccccoevvevieieennenn, 22
3.3 Formation of Planar MechaniSmsS.........cccccverviieiienesie e 23
3.4 Degree of Freedom of Body SYStEM ......ccccciiiiiiieiiiicceese e 29
3.5 Formation of KinematiC @qUAtIONS ..........c.cooeiiririiinieee e 30
4 Matrix expression of Kinematic Variables.............cccocvvveveiieiieic e 33
4.1 Matrix Expression of Kinematic Variables at Rotary Motion....................... 33
4.2  Matrix Expression of Kinematic Variables at General Planar Motion.......... 34
4.3 Matrix expression of Kinematic Variables at Simultaneous Motions........... 35
5 VECIOr MELNOA ..o 38
5.1 Kinematic Analysis for Four-ltem Mechanism ..........c.ccccoevviveviieieccieseenean, 40
5.2 Kinematic Analysis for Six-ltem Mechanism ..........ccccoeiiiinniniiiiicn, 43
5.3 Kinematic Analysis for Seven-ltem MechaniSm...........cccccevieiviieiieciiesinn, 48

5.3.1 Dynamic analysis of planar mechanism...........ccccocerviiieninininieeee, 52

5.3.2 Distribution of the stress in items (members) of planar mechanism......... 53
5.4 Kinematic Analysis for Ten-ltem Mechanism .........cccoceveienininiininienenn, 55
5.5 Kinematic Analysis of the Pressing Machine............c.ccccoovvvviiiiiccie e, 64

5.5.1 Dynamic analysis of planar mechanism...........ccccocveniininininiceee, 70
5.6 Kinematic Analysis of the manipulator for removal of rough tyres.............. 73

Kinematic and Dynamic Analysis and Distribution of Stress for Planar
Mechanisms by Means of SolidWorks Software ...........cccccoceeveiieiiicinnene, 77

6.1 Kinematic and Dynamic Analysis and Distribution of Stress for Four-ltem
MECRANISM ... e e 77



6.1.1 Type of finite elements and material properties...........ccoccevvvvrivrivrinenennn. 81
6.1.2 Distribution of the Stress in Items of Planar Mechanism.............c.ccccuev.... 82
6.2 Kinematic Analysis and Distribution of Stress for Five-ltem Mechanism ... 85

6.2.1 Type of finite elements and material properties..........cccccevvviervereiiiennnn, 90
6.2.2 Distribution of the Stress in Items of Planar Mechanism...........cc.ccc.c...... 90
6.3 Kinematic and Dynamic Analysis and Distribution of Stress for Six-ltem
MECHANISMS ... e 93
6.3.1 Type of finite elements and material properties..........ccccceveevvevveieiiiennnn, 97
6.3.2 Distribution of the Stress in Items of Planar Mechanism...........c..cccc...... 98
7 Procedures for Kinematic and Dynamic Analysis of Planar Mechanisms by
Means of SOlIAWOrks SOftWAre..........cccvvveiieiiiiesece e 127
7.1 Creation of a computational model in the SolidWorks Program................. 128
1T - UL =SSP 141



Introduction

The monograph "Analysis and synthesis of planar mechanisms" deals with the
numerical analysis and synthesis of planar mechanisms.

The solution of real problems from practice is often based on the solution of

complex systems relating to differential, integral as well as algebraic equations. In
the most cases, it is not possible to obtain analytical solutions and therefore, the
designers use numerical procedures, using modern computer technology.
The modern computational methods depend on the creation or formation of a
virtual model along with the subsequent simulation of the specified system and by
this way, it is important to point that the formation and simulation belong to
inseparable part of work of current designer in order to solve the whole complex of
problems, the solution of which can bring significant economic benefits.

In relation to the requirements of the practice, the main work of designer is to
specify and optimise the parameters of the designed device with respect to its
weight, shape, geometry or other dynamic properties. The main goal of design
work is to save material and to find the best solution from the aspect of the material
usage as well as the appropriate shape of the structure.

Nowadays, the increased requirements for material consumption, operating
lifetime, durability, reliability of products and machine devices require new
progressive approaches to solve the tasks of technical practice. Using the suitable
computational or numerical programs, the precise, fast and efficient study can be
carried out, while the given study more or less affects the static and dynamic
characteristics of the machine or device.

The main aim of the monograph is to acquaint the reader with the fundamental
terms of theory for understanding the process of solution of the given tasks and to
show the issues, approaches, procedures for formulation of the theory, modeling
and simulation of determined solid body systems which can be used as examples of

devices or machines from practice.



The content of the monograph is divided into seven chapters. The first chapter

is devoted to the computational modeling, which allows real systems to be
investigated using mathematical relations or equations and there is also the brief
description of the appropriate approximation methods of continuum mechanics as
well as the most commonly used numerical methods. The second chapter is
devoted to the introduction to the finite element method (FEM). In the given
chapter, the basic principles of the finite element method are elaborated, while the
main attention is paid to the four-node tetrahedral space element which was used
for modeling of planar solid body systems.
The third chapter is closely connected with kinematic analysis of planar solid
systems, the basic concepts and theory and terms which are necessary for creation
or formation of planar solid body systems. The fourth chapter is based on to the
expression of kinematic quantities at rotary motion, general planar motion and
simultaneous motion of solid body in the matrix form. The fifth chapter deals with
the solution of kinematic variables or parameters (quantities), using vector method.
Numerical solution of kinematic (parameters) quantities was applied to various
solid body systems. The sixth chapter includes kinematic and dynamic analysis,
and stress distribution in planar solid body systems, using SolidWorks software.
Numerical application was carried out for several examples. The last, the seventh
chapter is devoted to the description of the individual procedures which are
necessary for the performance of the kinematic and dynamic analysis of six-item
(member) or body system, using SolidWorks software.

| believe that the monograph will be the great contributing aid for academic
specialists as well as for designers, investigators and other experts from practice.
At the end, | consider it a nice duty to express many thanks to the reviewers for
valuable comments, recommendations and ideas which have led to the

enhancement of the given monograph.

Ptchov, October 2023 Authors



1 Computational Modeling of Planar Solid Body Systems

Static, kinematic and dynamic analysis of planar solid body systems is closely
connected with a virtual (mathematical) model of the investigated system, which
has to be created or formed as the first in the modeling process. The virtual
(mathematical) model describes all the essential properties of the real system with
the boundary or critical conditions, such as dimensions, weights, arrangement of
individual bodies, kind of interconnection, stiffness or rigidity of individual bodies,
way of loading by external forces as well as degrees of freedom.

Computational modeling is based on the similarities between the real and
abstract systems and it allow us to investigate the real systems by help of abstract
systems, using mathematical relations or equations. The given modeling is suitable
for the study of even very complex physical phenomena in extensive systems if we
are able to describe the phenomenon as well as the system in a sufficient
mathematical way.

Complex physical dynamic phenomena are mostly expressed by simple or
partial differential equations or their systems (including additional conditions) and
they can be commonly solved in a numerical way, using computational technology.
The fundamental principles of the numerical methods are based on the division or
transformation (discretization) of dependent variables of physical quantities in the
computational domain into the individual, discrete values in the created nodal
points of the geometric model with the reference to the issue or task.

Numerical solution of the linear and nonlinear differential equations, which
describe particular temperature, velocity, stress, strain filed or displacement fields,
is a set of numbers due to which we can get the resultant fields of individual
dependent variable physical quantities (T,w,d5,¢,u,....). Numerical methods are
used to solve the dependent variable physical quantities in the finite number of
nodes of the discretization mesh in the computational domain.

The common feature of all numerical methods is connected with the effort to

get the solution of the differential equation to the level of algebraic equations and
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to solve these resulting algebraic equations by common matrix calculation.
Numerical methods make it possible to obtain a solution of a physical quantity in a
specific number of discrete areas (nodes) for the selected differential mesh (finite
element mesh) in the whole area or on the surface part of the created geometric
model.

The basic numerical method for solving differential equations is the finite
element method (FEM). The solution of differential equations is associated with
the search for a minimum of the strictly defined functions which are also called
shape functions. The principle of FEM is that we substitute corresponding quantity
(e.g.: temperature, speed or velocity, etc.) by a discrete model, which is determined
by a set of corresponding continuous functions (polynomials) for a finite number of
sub-regions (elements).

The elements of the observed area are obtained by dividing the given area into
a set of sub-regions of the simple form (triangles, quadrilaterals, tetrahedrons,
pyramids). The functions, which are searched, are approximated within the
boundaries of each sub-region by the polynomials and by this way, the coefficients
of the approximating polynomials are expressed through the values of the searched
functions in the finite number of nodal points of the elements. The sub-region with
selected determined nodes is called an element. The mutual interaction between
finite elements takes place exactly through the nodal points of the elements. The
solution of the given task or issue is based on the calculation of the specific
numerical values of the searched quantity in nodal points of the model from the
system of linear algebraic equations.

Using the computer, the solution of a mathematical model replaces an
experiment of a real system and therefore, it is called mathematical
experimentation or simulation. In this case, the investigated problem is analysed
deterministically (the outputs are introduced with the precision of experimental
errors), using the numerical methods, while the model solution is implemented
through a suitable program system. The computational modeling scheme is shown
in Fig. 1.1.



Analysis Mathematical Physical Geometric Boundary

of — Model — Model — Model — Conditions
Problem
Numerical Simulation Numerical
Processor Model Method
?
Analysis: Interpretative Results:
stationary Programs: temperature fields,
non-stationary — SolidWorks, stress fields,
linear Adams, Cosmos, velocity fields

non-linear Adina, Ansys, ...

Fig. 1.1 Computational modeling scheme

The principles of computational modeling with subsequent simulation and load
analysis contain a large amount of information from mathematics [2, 6, 7, 9, 11,
42], mechanics [10-15, 17, 19, 22- 50], finite element method (FEM) [1, 3, 4, 5, 8,
16, 18, 20, 51], as well as from the theory of construction and design of machine
nodes and at last but not least, from the field of material engineering. This
multidisciplinary conception naturally leads to teamwork or to complex

comprehensive degree of knowledge in the specific engineering fields.
1.1 Numerical Methods in Continuum Mechanics

The exact solution of the state equations of elasticity (resilience) and strength
is very complicated and therefore, the approximate numerical methods have been
developed. The approach to the solving of a mathematical model of a task or issue
can be based on two basic methods:

a) the approximate solution of state equations,

b) the application of extremalisation principles (energy approaches).

In relation to the first mentioned method, it is important to point out that we

solve the state equations, which are mostly in the form of differential equations and



the given solution is based on the finite difference method in various modifications.
Using the known differential relations, we can obtain an approximate solution for
discrete points to which the investigated object was divided.

In the second mentioned method, we use the basic principles of mechanics
related to the energy balance. For example, we compare the potential energy of
internal and external forces by minimizing the difference. The given comparison is
performed as a variation task (issue) or through the principle of virtual work or
performance. A more detailed description of the introduced methods as well as
basic principles can be seen in [3], [7-9] and many other literature sources.

Based on the principle of virtual work, the best-known numerical methods
include also the Galerkin-Bubnov method in its deformation or force form.

The methods, which are based on conventional variation principles, include the
Rayleigh-Ritz method in two variants — deformation and force. The finite element
method is also based on the given deformation variant. The main idea of all
methods relates to the estimation — the approximation of the solution by help of
simple mathematical functions, while the following extremalisation condition must

be met:

7 =[(oy -y —X;-du)-dV —[p U -dS - min. i, j=xy.z, (17
\% S

or in matrix form:

ﬂ:I(GT.&—XT-&I)-dV—IpT Su-dS — min. | (1.2)
\% S

where oj; are the stress tensor components, &; are the strain tensor components, p;
are the components of intensity vector for the external force, and u; are the
displacement vector components. Equation (1.1) is supplemented by other
members or items, including the fulfilment of boundary conditions, compatibility
between elements, or any other conditions.

The best known and most popular numerical methods of engineering mechanics

are:
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Finite-difference method (in the investigated area, we define points — nodes,
which are fictitiously connected and thus we are able to create a mesh, which
has to be dense enough to achieve the sufficient accuracy of the discrete values
in nodes for the investigated function and nowadays, the given method is used
in a minimum way);

Transfer Matrix Method (it is based on the balancing of state quantities
between predefined solid body sections, while the most notable application of
this method was introduced for static and spectral analysis of simply supported
beams with added discrete values and springs — the application of this method
is more efficient than application of FEM, but it is limited by complexity of
task or issue);

Finite Element Method - FEM (it is based on Rayleigh-Ritz deformation
method where the element mesh is defined for the whole body and system
equations are created by special globalisation procedure, which includes
creation of system parameters of individual elements, such as matrix of
stiffness or rigidity, mass or weight and many others — it is currently the most
widely used method with great commercial success and a wide range of
application);

Boundary element method (the mesh of the elements is created only at the
boundary of the investigated object, while the investigated quantities inside the
body are calculated by help of the known exact solution of the problem, and the
advantage as well as efficiency of the method is based on the reduction of the
task/issue extent by one grade — although there are several software packages
resulting from principles of this method, it has not been as popular as FEM in

engineering practice).
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2 Introduction to the Finite Element Method (FEM)

Nowadays, the Finite Element Method (FEM) is fully algorithmised and used
in a large number of commercial computational programs in order to solve very
complicated tasks or issues. The great advantage of this method is that the created
model can correspond accurately to the real geometry of the object. Actually, the
given mentioned fact is not the general rule for methods, which are based on
conventional approaches of the theory of elasticity (resilience) and strength.

The authors of [1], [3], [4], [8], [16], [51] as well as many others have the greatest

merit in dissemination of the important facts, principles and information about the

finite element method (FEM).

Currently, the FEM stands for a specialised scientific field and it includes the

following parts:

1) the theoretical part, where different FEM formulations and different relations
are for different types of elements are derived or differentiated,

2) the mathematical part, which includes such problems as the existence of the
solution and its convergence, error estimation of the solution and application
appropriate or suitable numerical algorithms,

3) the computer part, where the special computer programs or software are created
and implemented, including Fortran, C ++, MATLAB and so on,

4) the application part, where the user operates with FEM programs to solve the
specific problems.

The main principle of the method can be characterised very briefly: the planar, face

(flat) or spatial construction is divided into elements of any shape, while the given

elements are commonly called the finite elements (Fig. 2.1).
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Fig. 2.1 Division of the construction into the finite elements

Dividing lines and areas create dividing points or in other words “nodes”. The
values of displacements or forces at nodal points are considered as unknown
quantities and they are designated as the nodal parameters. The deformations and
stresses within the elements are expressed by using the nodal parameters in the
form of polynomials or interpolation functions. Finally, the variational principle is
applied to the continuum as a whole, and by this way, it is possible to specify the
equations for the searched quantities. After the solution of the given equations, the

deformation and stress of the whole construction (structure) is determined.
2.1 Linear Analysis of Static Tasks

There are the basic ideas of the finite element method for static loading of the
construction (structure). The deformation variant of FEM is going to be applied and
therefore the displacements for individual points or nodes of the discretised system
will be analysed as the first. This system is divided into a finite number of elements
so that the changes in cross-sections, material properties or forces can be taken into
account.

For more complicated tasks (issues), there is possible to use the energy

approaches, especially conventional variational approaches, including the

13



Lagrangian’s minimum energy potential approach and the Castigliano’s principle
for minimum energy of system. We consider the deformation approach and
therefore, it is needed to explain Rayleigh-Ritz strain or deformation method
briefly. By applying the matrix notation of equation (1.2), let us define the problem
relating to the minimum functional of the total potential energy
7==|lo" -€)-dV —|u" -p-dS — min.,
2 \_[( ) .Sf p (2.1)
where o is the stress vector, € is the deformation vector, p is the external load
intensity vector and u represents the displacement vector. The first integral is the
work of the internal forces and the second one represents the work of the external

forces (volume forces are not taken into account). Let us take into account the

validity of Hooke’s law in general:
c=D-¢g, (2.2)

where D is a matrix of material constants, and then (2.1) is in the form:
n:%I(sT~D~s)~dV—IuT-p-dS—>min. (2.3)
\% S

One of the basic ideas of the finite element method (FEM) is based on the
approximation of the function for u, v, w displacement by approximate shape
functions, based on discrete values for displacements in the finite element nodes.
The finite element stands for the part of the solid body and the given part can be
defined by nodal points, own geometry, material characteristics and equations,
which are valid in the mechanics for flexible bodies (but not for all, as it is
evidenced by some studies or publications [6], [15-16]). The finite element model
of the solid body is then created by the imaginary connection of all elements. In
fact, this imaginary connection is carried out by creating of so-called global
stiffness (rigidity) matrix of specific system and it represents the basic system
parameter of the method and moreover, its creation is a mathematical expression of

the process of discretization of the analysed body.
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Using Cauchy’s equation, we can get a general relation between the g vector of
relative strains or deformations and the u vector of discrete displacement values in

the nodes of the element:
e=B-u, (2.4)

where B is a matrix of differentiations of shape functions in accordance with

Cauchy’s equations. After insertion of (2.4) to (2.3), we can get:

\ S

where

K=I(BT .D-B)-dV, (2.6)
Vv

is the finite element stiffness (rigidity) matrix. It is different for each one element.
The f, vector is a nodal force vector. By applying the necessary condition of the
existence of the extreme in (2.5), we can obtain

Z—Z:O = K-u-f, =0 alebo K-u=f,. (2.7)
Equation (2.7) represents the equilibrium of forces in nodes of the element. After
the so-called globalization procedure (calculation of the stiffness contributions of
all elements as well as creation of the overall stiffness matrix of the investigated
system), the vector of the nodal forces will be the same as the vector of external
forces introduced into the nodes and matrix K will already be the overall stiffness
(rigidity) matrix of system in the global coordinate system. Then, the state equation

for the problem can be:

Ktos “UsLos = foLos: (2.8)

By solving of the ugog and its subsequent conversion to the u vectors of
displacements for the individual elements, we can calculate the € vector — equation

(2.4) for each finite element and using the Hooke's stress-strain law, we can get o.
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The principle of creation of the stiffness matrix of the element as well as the

creation of the whole analysed system represents the first step relating to successful

understanding and familiarising of the method. The finite element represents a

fictitiously selected small part of the solved construction (structure), for which the

selected conditions (describing the observed physical phenomenon) have to be

valid. The each one element is characterised by material and geometric properties

and it is important to point out that its physical interpretation is mainly based on

mathematical means.

The finite elements are divided according to their geometry (Fig. 2.2) into:

 the one-dimensional (bars, beams),

+ the two-dimensional (plane stress or strain, triangular, quadrangular elements),

« the three-dimensional (spatial stress and deformation, tetrahedron, brick
elements).

/,.__4/’

1D

2D

2D

3D

Fig. 2.2 Division of the finite elements [3]

The finite element method makes it possible to detect the stress and state of
deformation or strain under the any load at any point in the solid body of any shape
and material.

2.2 Modeling with Four-node Tetrahedral Space Elements

Consider the four-node linear tetrahedral spatial element (Fig. 2.3). Element

belongs among the basic types of volume finite elements [1], [3], [51].
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In the element, we are able to define 12 strain or deformation degrees of

freedom — after the three displacements for each node, the vector of unknown nodal

displacements can be:

u= [ul Vl Wl uZ VZ W2 u3 V3 W3 u4 V4 W4 ]T ' (2'9)

Fig. 2.3 Tetrahedron spatial element

In the order to differentiate the stiffness matrix of the element, we consider the

three linear functions displacements relating to u (x,y,z), v (x,y,z) and w (x,y,z):

a,

N L x vy z]a

ux )=t x y zJ

a4
bl
2

v, y)=fL x y z]< %=1 x y z]a, (2.10)

w

b
b
b

4
Cl

C,

wix,y)=fL x vy 2]-’ =L x y z]a,

Cs
Cy
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u 1 xyz0O0OOOTOT OO O||la
ve=l0 0 0 01 xy z 0O O Olqa,r=a-a (2.11)
w 0 00 O0OO0OO0OOO0OT1Xx vy z||la,

We can determine the unknown coefficients of the a vector from the boundary
conditions for the nodal values of displacements and it can be seen in the matrix
formin (2.12).

u, 1 x vy, zz 0 0 0 00 0 0 O

A 0 0 01 x vy, zz 0 0 0 O

W, 0 0 0 OO0 O 0 1 x v, 1z

u, 1 x, yb z, 0 0 0 0 0O O O O

v, o 0o 0 01 x, vy, 2z, 0O 0 0 O

W, 0 0o 0 00 0O O O 1 X, vy, z

w71 x vy, 200 0 000 o0 o™ (2.12)
A 0 0 0 01 X vy, zz O 0 0 O

W, 0 0 0 00O 0O O 0 1 x5 VY, 1z,

u, 1 x, ybzz 0 0 0 0 0 0 0 O

v, 0 0 O 1 x, vy, zz 0 0 0 O

w,) [0 0 0O 00 O0 0 0 1 x, v, 2z,

then, the a vector will be:

a=A"-u. (2.13)

If the u (x,y,2) , v (x,y,2) and w (x,y,z) functions of area for displacements are:

u(x,y,z)
v(x,y,z) t=a-At-u, (2.14)

w(x,y,z)

we can express Cauchy’s vector:

18



g, au/ox 010000000000
g, ov/dy 000000100000
e owjoz 000000000001
ol _ A*.u=B.u (2.15)
V| |Ov/ox+ou/ey| |0 01001000000
Ve| |ov/ez+owey| |0 00000010010
7w) |ow/ex+oufez| [0 00100000 10 0

If we consider the spatial stress, the matrix for material constants is:

1-v v v 0 0 0
v 1-v v 0 0 0
v v 1-v 0 0 0 ,
D- E o o o 1‘22V 0 0 (2.16)
L-2v)-(L+v) 12 )
0 0 0 0 0
2
o 0o o o o %
L 2

where E is the known tensile modulus and v is Poisson’s ratio. By applying the

general relation for the calculation of the stiffness (rigidity) matrix, we can get:

K:J.BT-D-B-dV:V-BT-D-B, 2.17)
14

where V is the tetrahedron volume, which can be calculated:

1 Xo=X Yo=Y 272
Vzgdet Xg—X, Ys—VY, Z3—2Z | (2.18)

Xy — X Yo— Y1 Z,— %

where X1, Xz, ... y4 are the coordinates for the nodes of the element. The stress

calculation is based on Hooke's law and it is implemented as follows:

*l=¢=D-g=D-B-u, (2.19)
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o s the stress vector,

D is a matrix of material constants,

€ isthe strain vector,

B is a matrix of differentiations of shape functions according to Cauchy’s

equations

U is the displacement vector.

In this case, the stresses are constant throughout the whole element. This

results in discontinuity of the calculated stresses throughout the whole analysed

body.
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3 Kinematic Analysis of Planar Solid Body Systems

The purpose of the kinematic solution of the solid body systems is to
determine the movement (motion) of the individual members or items and their
significant points in dependence on the movement (motion) of the members or
items which drive the mechanism. To determine movement (motion), it is
necessary to determine the position, velocity or speed and acceleration (or angular
position, angular velocity or speed, and angular acceleration) of investigated items
(members) and points in dependence on the position of driving items (members) or

in dependence on the time.
3.1 Basic Concepts and Fundamental Terms

A solid body system is a kind of assembly of at least three bodies (members),
including a basic frame, which is used to connect the given items (members)
together by the kinematic constraints. Mechanism is a movable system of items or
members (bodies), which move mutually, while the kinematic constrains stand for
one or two degrees of freedom of movement. Mechanisms, which are used for the
transmission of motion (or transmission of forces, moments), are called
transmission mechanisms and mechanisms, which are predominantly used to drive
the points and bodies on certain paths or trajectories are called driving mechanisms.

The two items (members) that are connected or joined together and can move
relative to each other can be understood as a kinematic pair. An overview of some
kinematic pairs of planar mechanisms is given in Tab. 3.1 and their design can be

various [9].
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Tab. 3.1 Planar kinematic pairs

Description Degrees Type Scheme
of of or Symbol and
Kinematic Pair Freedom Class Coordinate
Rotary 1 2 r _OA‘”
S
Sliding 1 2 p
S
Rolling 1 2 % >K
s
St
General 2 1 0

P AN

2

The items or members which drive the mechanism are called driving items
(members) and the driven items (members) are those, the motion (movement) of
which depends on the driving item or member.
several bodies (members) form a kinematic chain. The kinematic chain can be
opened or closed, and each can be either simple or complex.

The relationship between the output value (for example, the angle or path of

Connected by kinematic pairs,

the output member) and the input value is called the transmission ratio.

3.2 Classification of Solid Body Systems (Mechanisms)

Mechanisms can be classified on the basis of the various aspects:

* on the basis of the movement (motion) of the bodies (items or members) —
the plane, spherical and spatial mechanisms,

* on the basis of number of items (members) — the simple mechanisms (3, 4
items or members) and complex mechanisms (6 or more items or members),

* on the basis of transmission with permanent transmission and variable

transmission,

* on the basis of the applied elements — articulated, cam, geared, etc.,

22




« on the basis of number of degrees of freedom — the mechanisms with one or
more degrees of freedom,

* on the basis of any other criteria.
3.3 Formation of Planar Mechanisms

The theory of creation or formation of mechanisms deals with general methods
of their structural analysis and synthesis. Mechanisms are planar if all items
(members) move in planes parallel to each other. In Fig. 3.1 a, b, c, there are
kinematic diagrams of the items (members) for binary (the 2", ternary (the 3')
and quaternary (the 4™) degree with rotational kinematic pairs. In Fig. 3.1 d, e,
there are binary items (members) with one and two displacement pairs. The
kinematic chain consists of a set of items (members) which are connected by
kinematic pairs. The kinematic chain is called simple if all the members of this
chain are in binary or the 2" degree (Fig. 3.2 a, b). The kinematic chain is called
complex if it contains at least one item (member) of ternary or the 3™ or even
higher degree (Fig. 3.2 c, d) [14].

/AT

Fig. 3.1 Binary members
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c) d)
Fig. 3.2 Kinematic chain: simple (a, b) and complex (c, d)

a) b)

Fig. 3.3 Simple mechanism (a) and complex mechanism (b)

If in the kinematic scheme of a chain several of its items (members) form a
closed pattern image (polygon), we can say that the chain forms a loop. Actually, it
is the closed cinematic chain (Fig. 3.2 b, d). If the kinematic chain is opened, there
is not any loop (Fig. 3.2 a, c). A combined kinematic chain represents the condition
where some members are in the loops and some items (members) are not in the
loops. Mechanisms arise from closed kinematic chains if anyone of items
(members) becomes a frame.

The simple kinematic chains result in simple mechanisms (Fig. 3.3a) and the
complex chains stand for the arising of complex mechanisms (Fig. 3.3b). The
introduced method for formation of the mechanisms is called kinematic chain

24



method. In the systematic creation of mechanisms by this method, the large
number of them can be assembled, because it is possible to select different chain
items (members) to be the frame. Moreover, it is possible to replace the rotating
pairs by any other parts or to change the driving items (members) as well as
proportions of items (members) in relation to the mechanism. The mechanisms can
be also formed or created by the method for grouping of systems (objects). When
connected with free kinematic pairs to a frame, the group of systems is a kinematic

chain which gives a fixed, static, specific system. Various groups of systems are

BT

a)

A

e)

shown in Fig. 3.4.

Fig. 3.4 Different groups of systems

The connected or disconnected with the body systems (mechanism), the group
of systems does not change the number of degrees of freedom (movability). The
given statement represents the prism of the method for grouping of systems or
grouping of objects. The gradual connection of systems or objects with the driving
items (members) and with the frame and subsequently with the mechanisms
resulting from the previous steps leads to the creation or formation of variety of

mechanisms. The other possible steps are shown in the following statements:
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- if the binary member with the pairs of the second type or class is connected
with the mechanism, the movability of the given mechanism will be decreased
by one degree of freedom and if the given item (member) is disconnected, the
movability will be increased by one degree of freedom,

- if the binary item (member) with the pairs of the second type or class is
replaced by common pair, which have connected the items (members) in
mechanism, the movability of the mechanism will not be changed.

The mechanism, which is shown in 3.5 b, can be formed or created if the binary
group (designated as 3, 4) is connected with the crank and frame (designated as 2
and 1, respectively) and subsequently, the other binary group (designated as 5, 6) is
connected with mechanism, which was created or formed in the first or previous
one step. The resulting mechanism has 1° of degrees of freedom because the crank
(designated as 2) has also 1° of degrees of freedom, and the further and
subsequently connected objects or groups of objects are not able to change the

given movability.

o) )

Fig. 3.5 Formation or creation of group of objects
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Basic four-item mechanisms or mechanisms with four members:

Crank mechanism Four-item articulated mechanism

The further possible variants of four-item mechanisms

Basic three-item mechanisms or mechanisms with three members:

The cam mechanisms are the most common representatives of three-item

mechanisms

Cam mechanism
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Three-item mechanisms with one degree of freedom are needed to have one
common Kinematic pair.

The further possible variants of three-item mechanisms

Multi-item mechanisms or mechanisms with more members:

Multi-item mechanisms are made up of the basic four-item and three-item
mechanisms by connecting the groups of systems or objects.
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Mechanisms with more degrees of freedom:

3.4 Degree of Freedom of Body System

The number of degrees of freedom of the planar mechanism is calculated
according to the equation [9, 10, 14].

n=3(i—1)-2d,-ds, (3.1)
where

n - the number of degrees of freedom,

3 - the solid body in plane has 3° of freedom,

i - the number of items (members) of mechanism along with the frame,
-1 - the subtraction of the frame,

d> - the number of pairs of the second type or class (the total number of rotation,
displacement and rolling pairs),

d; - the number of pairs of the first type or class (common pairs).

An overview of planar kinematic pairs is in Tab. 1.3. The construction
design of these pairs can be different. In the literature [9, 14], there is the equation

(3.2), which is equivalent to equation (3.1).

n=3(-1)-2(r+p+v)-o0
(3.2)
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3.5 Formation of Kinematic equations

The elements of any set of variables are called generalized coordinates but it is
also important to point out that the given set of variables strictly determines the
position and orientation of all the solid bodies of the mechanism. Generalized g
coordinates can be independent or dependent. They are changed on the dependence
of time and they are going to be written to the column vector:

q=(0 G2 . )", (3.3)

where n represents their overall number.

The vector equation of its position stands for the basic equation of the

mathematical model of the mechanism and it describes its kinematic properties [1].
#(q,t)=0 (3.4)

After the breaking down of the given equation and specification of its scalar
components, we can get a system of nonlinear equations. The equations can be
divided into two groups.

1) The equations, which describe the system of solid bodies regardless of the
input parameters of the driving item (member), are the basis for the solution of the
dependent generalized coordinates. They are called kinematic equations of the
position of a system of solid bodies.

¢ (a,1) =0 (3.5)

2) Equations that describe the values of input generalized independent
coordinates are defined by the kinematic equations of the input variables. Their

number is equal to the number of degrees of freedom of the n;, mechanism.

¢ (1) =0 (3.6)

We rewrite (3.4) by help of (3.5) and (3.6) in the form:
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=0. (3.7)

o(q.1) = {¢K (q,t)}

$5(a,t)

The number of dependent variables is equal to the number of equations (3.5)
and it is designated as ng. The total number of variables is: n=n, +n, .

If the connections between the bodies are holonomic (they do not change with

time), the equation (3.7) has the form:

=0. (3.8)

@ { @) }

s (a.1)

The ways of its formation are different. For planar mechanisms, the vector
loop method is mostly used. In computational programs for systems of bodies
(DADS), there are used the elements to create a model of the mechanism, while the
given elements are combined to obtain the specific resulting mechanism. The
equations of motion of the mechanism are created by "combination" of the
equations for the individual members of the mechanism. The examples of the
elements are: connection of a point of body with a frame, connection of points of
two bodies, rotary connection of two bodies, displacement connection of two
bodies, connection of bodies by means of a rod with articulated end or with two
displacement ends and the combination of joint with displacement end, wheels —
rolling cams, absolute driving systems, relative driving systems. For the solution of

the equation (3.8), the Jacobian’s ®(qg,t) matrix is used:

¢, Op [
oq, o9, aq,
99, 09, (23
oq, o9,  aq,
® = - - - 0. (3.9)
9Py 0Py 99,
o0, oq, o, |
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Jacobian’s matrix can be also obtained indirectly by differentiation of equation of
the position (3.4).

%q)(q,t) - @, (a4 + D, (3.10)

@, is partial differentiation of the position equation with dependence of time.

The equation of speed (velocity) is obtained by a simple modification:
@, (0,t)q = -, . (3.11)

By solving the velocity equation, the velocities or speeds of natural coordinates
can be obtained. The obtained results can be used to express the speed (velocity) of
any point of the mechanism.

The acceleration equation is obtained by the further differentiating of the
(3.11)

(I)q(q!t)q = _(q)qQ)q q - 2q)qtq _q)t . (312)

One of the simple ways to solve the equations (3.8) of the position of the

mechanism is to use the Newton Raphson method.
(I)(Qi)+q)q(Qi)(Qi+1_Qi):0 (3.13)

Note:

The numerical complications can occur when the equations of the position of a
given task is being solved numerically. It is not enough to use only the Newton
Raphson method to solve them, but it is necessary to identify and to eliminate
excessing connections. There are often problems due to the fact that the position

equations are not unambiguous.
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4 Matrix expression of Kinematic Variables

4.1 Matrix Expression of Kinematic Variables at Rotary Motion

The axis of the rotation passes through the origin of the coordinate system (Fig.4.1)
[11, 14].

Fig. 4.1
The expression of the position vector for the L point is:
r=Tp, (4.1)
where

r= [x, y]r is the position vector for the L point in the basic space,

p= [é, n]T is the position vector for the L point in the space of the body.
The transformation matrix of the rotary maotion is:

cosep —sin
T{ =7 ‘”}. (4.2)
sing cose

The expression of the speed for L point is:

v=Tp=Top, (4.3)

where

v—[v Vv ]Ta 0= 0 -~ (4.4)
o w 0| :

The expression of the acceleration for L point is:
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a=Tp=Tla+o’)p, (4.5)

where

a= [ax, ay]T is the expression of the acceleration in the basic space,

0 -
o { Oﬂ is the matrix of the angular acceleration of the solid body.  (4.6)

4.2 Matrix Expression of Kinematic Variables at General Planar Motion

For the space of the solid body, the coordinate system is determined as

Q, &, n and for basic space, it is O, x, y (Fig. 4.2) [11, 14].

y

X
Fig. 4.2
The expression of the position vector for the L point is:
r =Tp+r9, (47)
where
r= [x, y]T is the position vector for the L point in the basic space,
p=[&n] is the position vector for the L point in the space of solid body,

ro =[%.Y,] isthe position vector for reference Q point in the basic space.

The transformation matrix of the rotary motion is:
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cose —sin
T= Lin Z cos;} ' (48)
The expression of the speed (velocity) for the L point in general planar motion is:
v=Tp+i,=Top+v, (4.9)
The expression of the acceleration for the L point in general planar motion is:
a:Tp+FQ:T(a+m2))+aQ. (4.10)
4.3 Matrix expression of Kinematic Variables at Simultaneous Motions

The body designed as 2 moves within the basic space 1 as well as it moves in
relation to body designated as 3 etc., up to its motion in relation to the body
designated as n-1 body, while the body designated as n is the body which is
investigated. The selection of  the coordinate systems IS
O, X, Vi, z;, 1=12,...,n (Fig. 4.3) [11, 14].

Fig. 4.3
The path of the L point of the n body is expressed by a matrix equation:
rn=T,r,, (4.11)
where
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Tln = T12T23T34 ------ Tn—l,n = ZTi—l,i (4.12)
i=1

In Or ry represent the position vector of point of n body which is in connection in
the system or in the basic space of 1,

Tin or Ty is transformation matrix of n:1motion or i:(i-1) motion.

The speed (velocity) of any point of the n body during simultaneous motions of the

individual bodies can be expressed by the equation:

v, =TI, (4.13)
or equation:
V1 = Tlnvlnrn ' (414)

Matrix of vy, speed o N:1 can be calculated by help of equations (4.15) or (4.16).

vy, =TT, (4.15)

Vi = T T£31V12T23,....,T T +

n-1n n-2,n-1,..., n-2,n-1  n-1n

+T:n,.....,-I_e._zll\/23-|-34 ...... TH +
(4.16)
Vn—l,n'
Matrix of angular speed (velocity) is based on the equation:
@, =T, Ty, (4.17)

or equation:
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w,=T" T Tl T T 4+

n-1n  n-2,n-1.., n-2n-1  n-1pn

..............

(4.18)
a)n—l,n'
Vectors of angular speed (velocity) can be also expressed by the equation:
a)ln = T;na)12 + T;—na)23 to + a)n—l,n' (419)

The acceleration of any point of the n body during simultaneous motions of bodies

can be expressed by the equation:

a, =T, (4.20)
or
a, = Tln(Aln + Vin)rn ) (4-21)

where A, =V, is matrix of acceleration.
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5 Vector Method

The vector method [10], [14] is a general method, which is suitable for
kinematic investigation of planar and spatial mechanisms. A certain polygon can be
assigned to each one simple mechanism can be assigned, while the sides of the
given polygon are considered as the vectors which form a closed pattern (Fig. 5.1).
For vectors, constraining the closure conditions, it can be written in the form (5.1):

> =0 (5.1)

/ //1//// /

Fig. 5.1

Breaking down the closure equation (5.1) to the x, y axes, it is possible to get two
scalar equations (5.2), which are solution for the position problem (positional

analysis of the mechanism),

x: Y l.cosg =0 and y: >l.sing =0 (5.2)
i=1 i=1
where

n — is the number of vectors forming a polygon,

li — is a length of the items (members),
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@ — is the angle between the positive direction of the x-axis and the positive
direction of the corresponding vector.
By differentiating equations (5.2), with respect to time, it is possible to get the

equations of speed (velocity):
%) l.cosp =D L@ sing =0 and y: Dising +> l.pcosg =0 (53)
i=1 i=1 i=1 i=1

If the lengths and angles of some members are constant, i.e.: they are not changed
along with time, the corresponding differentiations are zero. By differentiating the
equations (5.3), with respect to time, it is possible to get the acceleration equations
in the form (5.4):

X : an:i';.COSgai —Zznl:l}.(pi sin @, —an“li(piz Ccos @, _ili'éi sing, =0

n .. n n n (54)
y:> l.sing, +2> I,.¢,cosp — > Lig?sing, + > 1.9, cos g, =0
i=1 i=1 i=1 i=1
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5.1 Kinematic Analysis for Four-ltem Mechanism

Relating to the four-item planar mechanism (mechanism with four
members), solve the field of positions, angular speeds (velocities) and angular
accelerations of item (member) designated as 3 and item (member) designated as 4
in dependence on the position of the driving item (member). Use the vector
method. The numerical solution is carried out for the specified input values, if the
specified angle of rotational displacement for the driving item (member),

designated as 2, is: ¢, =q = 252°. The kinematic scheme of the mechanism is

shown in Fig. 5.2.

Specified or given values are:
DB =I,=0.04 m, BC =l3=0.05 m, BA =0.05 m, CE =1,=0.06 m,
@, =q =252°, ¢, =6.0563rad, @4 =0.96rad , w, =1rad.s™, a, =1rad.s™?,

Solution:

The mechanism consists of four bodies (items), including a frame. The number
of degrees of freedom is calculated according to equation (3.1) or (3.2) and there is
1 ° of freedom. The kinematics of the mechanism can be solved by using the vector

loop in Fig. 5.3. The formation of the equations of position (5.5), the differentiation
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of which, with respect to time for ¢ (i =12) variables, gives the equations for speeds

(velocities) (5.6) and then the given equations are rewritten into a matrix form
(5.7). If we differentiate equations (5.6) with respect to time once more, we can get
equations for accelerations (5.8), which can be rewritten into the matrix form (5.9).
The given solution was carried out by using the SolidWorks and the results of the
kinematic analysis are shown in Figs. 5.4, 5.5, 5.6 and the animation is shown in
Fig. 5.7.

Fig. 5.3

The variables are: [¢;.¢,]=[ps.0.]

For DBCEFD loop, the equations of the position are:

f, =1,c0sq+Il3c05¢; +1,c08¢, —I5 =0

f, =l,sinq+l3sing; +1,sing, =0 (5:5)

Speeds (velocities) and after further differentiation, a set of equations for

accelerations is:

f, =1,.qcosq+ ;.95 cos gg +1,.4, cOsp, =0 (5.6)
The system of equations for speeds (velocities) in the matrix form is:

—lgsing; —lysing, | | @3 | | I,sinq

{I3 cos¢g; l,cosg, ||ds| |—1,c08q a (6.7)
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f, =—1,.9% cosq—1,.qsing — l5.$Z oS B3 —l3.d5 Sin g3 —1,.02 COS P, — .65, Singp, =0

. 2 - 2 - . 2 . . (5'8)
f, =—1,.9°sing+1,.gcos q— 5.5 Sing; + l5.¢5 cOS 3 — 4.8 Sing, +1,.4, cos g, =0
The system of equation for acceleration in the matrix form is:
~lgsing; —lIysing, | [ 5] _[1,.0% cosq+1,.0sinq+15.6Z cos s +1,.97 cos ¢, 5.9)
lycosgy  1,c08¢, | |ds] | 1,.9%sing—1,.qc0sq+l5.p2sings +1,.42sing, '

The results from the kinematic analysis

o 400 —
3320 | — T T~
Pa240 |
[*l1e0 |

80 |- PR

10 70 130 190 250 310 370
¢, []

Fig. 5.4

42



('p's 1.5
P05 |-
[rad.s’]
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Fig. 5.6
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Fig. 5.7 Animation of the four positions of the mechanism
5.2 Kinematic Analysis for Six-ltem Mechanism

Relating to the six-item planar mechanism [31] (mechanism with six members),
solve the field of positions, speeds (velocities) and accelerations of the driving item
(member) in the dependence on the position. Use the vector method. The
numerical solution is carried out for the specified input values if the specified angle

of rotational displacement for the driving item (member), designated as 2, is: ¢, =q

= 20°. The kinematic scheme of the mechanism is shown in Fig. 5.8.
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Specified or given values are:

q=6,=0.34908 rad, a,=0.05m, a,=03m, L=012m, , =1rads™, a,, =1rads?

1

Fig. 5.8

Solution:

The mechanism consists of the six moving bodies (items) and a frame.
The number of degrees of freedom is calculated according to equation (3.1) or (3.2)
and it has 1 ° of freedom. The kinematics of the mechanism can be solved by the
help of the vector loop (Fig. 5.9). Formation of the equations of the position (5.10),
(5.11) the differentiation of which for ¢(i=12,34) variables gives the specific
equations for the speeds (velocities) (5.12) and then the given equations are

rewritten into a matrix form (5.13).
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Fig. 5.9

The variables are:
[¢1 1P2.P3,84 ] = [rl’r3 WPy 'rs]-

The displacement equations for CBEC are:

fy =a,.cos¢3—¢, =0,

f, =a,.5ings —L—¢, =0. (5.10)
The displacement equations for the CADC loop are:

fy =¢,.c08¢; —a,.cosq=0,

fy =¢,.5ing; —a,.sing—¢, =0. (5.11)
fy =-a,.4;.5in¢; — 9, =0,

f, =a,.4;.c0543 — ¢ =0,

i i 5.12
f3 = @,.c08 b3 — P, .hs.5iNPy = —a,.9.5inq, ( )
f4 =4p.5INgy + B, 3.C0S ¢ — @y = @,.0.0S .

0 0 —aqsing; -1| |4 0
-1 0 a, cos 0 0
4 ¢3 ¢2 _ q (513)

0 cos¢gs —¢,sing; O '¢53 —azsinq'
-1 sing; ¢,cos¢; 0 | |4, a, oS sq
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If the equations (5.12) are differentiated once more, we can get equations (5.14) for

the accelerations and they can be rewritten into a matrix form (5.15).

f) = —a,.¢5.5in g —a,0Z.cOS g5 — ¢, =0,
f, = a,.45.008 g3 —a,p2.5inghy — h =0,

f3 = ¢,.c08 43 — §;.93.5in g — B, $5.5IN g3 — ¢, P5.5in s —

; _ ] (5.14)
—¢,.05.cos g3 = —a,.0.5inq—a,.q°.cosq,
fy = @,.5inds + B $5.008 §3 + $;.$3.C0S 3 + ¢y 3. COS Sy —
— ¢y .92 .5iNgs — ) = a,.0.005q —a,.q°.5inq.
0 0 —asing; -1][4 a,p2 cos ¢
-1 0 ascosgs O || a,pesing,
0 cos¢gs —gysing; O . #s - 2,3 SiN s + G2 COS by — B,0SIN G — 8,0° COS (5.15)

-1 sing; ¢,c08¢; O ||, — 20,5 COS s + G2 SiN s + 8,0 COS S — 8,07 SiNq

The results from the kinematic analysis:

The given solution is carried out by using the SolidWorks and the results
of the kinematic analysis are shown in Figs. 5.10, 5.11, 5.12 and the animation of

the first three positions is shown in Fig. 5.13.

The course of displacements for B, C points in the
dependence of rotational displacement of crank
20
15 A C
e 10 -
2,
0 S T N ppe— r1
— 0 T T 1
= 50 10 200 300 400 rs
10 - B
-15 -
¢ [°]
Fig. 5.10
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The course of speed for B, C points in the
dependence of rotational displacement of crank

£
b r5
T 400
Fig. 5.11
The course of acceleration for B, C points in the
dependence of rotational displacement of crank
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Animation of the three positions of the mechanism
Fig. 5.13
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5.3 Kinematic Analysis for Seven-Item Mechanism

Relating to the seven-item planar mechanism [41] (mechanism with seven
members), solve the field of positions, speeds (velocities) and in the dependence on
the position of the driving item (member). Use the vector method. The numerical
solution is carried out for the specified input values if the given specified angle of

rotational displacement for the driving item (member), designated as 2, is: ¢, =q =

60°. The kinematic scheme of the mechanism is shown in Fig. 5.14.

Specified or given values are:

AE=1=006m, r,=r,=0.03m, I;=0.08 m, |, =0.06 m,
|, =0.08m,1. =0.122m, q=0,=60°, @,=40°, @, =300°, @, =20,
w,, =2 rad.s™ =konst.

Fig. 5.14. Planar mechanism — computational model.

Solution:

The mechanism consists of the seven moving bodies (items) and a frame.
The number of degrees of freedom is calculated according to equation (3.1) or (3.2)
and it has 1 © of freedom. The kinematics of the mechanism can be solved by the
help of the vector loop (Fig. 5.15). Formation of the equations of the position
(5.16), (5.17) the differentiation of which, for ¢ (i=12,34) variables, gives the

specific equations for the speeds or velocities (5.18) and then the given equations
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are rewritten into a matrix form (5.19). If the equations (5.18) are differentiated
once more, we can get equations (5.20) for the accelerations and they can be

rewritten into a matrix form (5.21).

The variables are:

[¢1:¢2:¢3,¢4]= [§037¢’51¢’e: |—7]
The equations of the position for the ABCDEA loop are:

f, =rg.cosq+ L;.cos ¢, + Ls.cos ¢, + rz.cos(360° —q) — 60

The equations of the position for the ABCFEA loop are:

f3 =rg.cosq+ L;.c0S ¢ + Lg.COS @5 + L;.cos 240° —60 17
fy =rg.singq+Lg.sing; + Lg.sing; + L;.sin240° (5.17)
f, =—rg.q.5sinq— Ly.¢.Sing — Ls.4,.5ing, + re.q.5in(360° — Q)

fy =—rg.0.5inq— Ly.¢.5in¢ — Lg.d5.5in gy + L;.cOS 240°
f, =rg.0.c0sq+ Lg.¢,.COS B + Lg.b5.COS b + L;.5in 240°
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L,.sing, —L..sing, 0 0 ¢ | [rs.sing—r..sin(360°—-q)

L,.cos¢ L..cosg, 0 0 . (52 ~ 0 .
- LS'Sin ¢1 0 - Lﬁ-Sin¢3 cos 240° ¢3 B rB_sinq 4 (519)
—Ls.cosdy 0 L.cosg, sin240° | | 4, —1,.C08(

fi= 7rB.q2.cosq —rg.q.sinq— Lg.d.sin g — L3.¢}12.cos¢l —Lg.dp.singo — L5.¢22.cos¢2 +

+rg.0.sin(360°—Qq) + rg .q2.cos(360° -q)

f, = Lg.h.cosghy — Lg.gP-sin gy + Ls.dhp.COSpy — L. 93.5in (5.20)
f3 :7rB.q2.cosq —rg.g.sinq— Lg.@.sin g — L3.¢12.cos¢l — Lg.d3.5in )3 — L6.¢§.cos¢3 + L7.c0s240°

fp= —rB.qZ.sin q+ rg.g.cosq + L3.h.cosgy — L3.¢512.sin - LG.(/ig?.sin #3 + Lg.@3.cOS¢h3 + L7.5in 240°

é | | rs.G%.cos q+ry.G.5in g+ L@ cos ¢ + Lg.47.cos ¢, — r..4.sin(360° — q) — r..G%. cos(360° - q)

14|_ Logf’ sin ¢, + Log5sin ¢,
A | Lo.gi’.cOS ¢ + Lo g5 cOS ¢ (6:21)
é ry.G2.8in g — r;.6.00s q + L,.¢2.sin ¢ + Ly.¢42.sin ¢,

The results from the kinematic analysis:

The specific solution was carried out on the basis of SolidWorks. In Fig. 5.16, there
is the course of the rotational displacement of the 3, 5, 6 items (members) and
moreover, the displacement of the F point in dependence on the rotational
displacement of the crank, designated as 2, is shown in Fig. 5.17. In addition, the
course of the angular speeds (velocities) of mentioned items (members) and the
speeds (velocities) for the F point is shown in Figs. 5.18 and 5.19. The first four
positions of the mechanism can be seen in Fig. 5.20.

50



Graph of the position
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Graph of the speeds (velocities)
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Fig. 5.20

5.3.1 Dynamic analysis of planar mechanism

The main objective of the dynamic analysis is connected with specification of the
loading for the individual items (members) and determination of the courses
relating to mutual reactions, referring to individual kinematic connections [4, 10—
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12]. The analysis was based on utilisation of the nonlinear model. Relating to the
analysis, the other important values were utilised:

« modulus of elasticity (Young’s modulus): E = 210 GPa,

« Poisson’s ratio: p = 0.3,

. density of material: p = 7850 kg m™>.

Fig. 5.21 represents the course of the reaction in D point of the body, designated

as 4 and Fig. 5.22 represents the course of the reaction in C point of the body,
designated as 3.

5000 -
4000 -
3000 -
2000 -
1000 A

0 < Fz
-1000 0 5 10
-2000 ”/\/ F
-3000 -

-4000 -

Fx

F[N]

Fig. 5.21 Course of the reaction in D point of the body, designated as 4 —
depending on time.

2000 -
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500 | /"\ —F
N
500 . ~—0 —75 T~ 10 ;
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-1500 -

Fx

FIN]

time [s]

Fig. 5.22 Course of the reaction in C point of the body, designated as 3 —
depending on time.

5.3.2 Distribution of the stress in items (members) of planar mechanism

The distribution of the stress for bodies [4,12-13], designated as 3, 6 can be seen in
Fig. 5.23- Fig. 5.26.
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Mol name: 2
Study name: ALT-Frame-9
Plt type: Stalc nodal stress Plot1
Deométion s von Mises (Nin"2)
46124008
424804008
387664008
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276164008
239084008
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Fig. 5.23 Distribution of the stresses (Pa) for body, designated as 3.
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Fig. 5.24 Course of the stresses for body, designated as 3 — depending on time.
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Fig. 5.25 Distribution of the stresses (Pa) for body, designated as 6.
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Fig. 5.26 Course of the stresses for body, designated as 6 — depending on time.

5.4 Kinematic Analysis for Ten-ltem Mechanism

Considering the ten-item planar mechanism, the vector method [28],[40] is used
for solution relating to field of positions, velocities and accelerations. The
numerical solution procedures are carried out for predefined input parameters or
values (5.22) relating to the Stirling engine, which can be seen in Fig. 5.27. The
kinematic scheme can be seen in the Fig. 5.28. The equations of position (5.24) are

differentiated on the basis of 4(i=1,8) Vvariables and it leads to the obtaining of the

equations of velocities (5.25). Subsequently, the given equations of velocities are
transformed to matrix form (5.36). If the equations (5.25) are differentiated once
more, the equations of accelerations (5.26) are obtained and after that, they are
transformed to the matrix form (5.37). The equations from (5.27) up to (5.35) are
valid and used for calculation of kinematic values of distance, speed (velocity) and
acceleration for D, K, J points. The given solution procedures are carried out by
means of the Nastran software and results of kinematic analysis are shown in Figs.
from 5.29 to 5.35.
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Input parameters:
q=0, =2,0864 rad

0, = ¢ =12745 rad
r,=¢,=70cm

0, =¢,=0,3818rad
0, = ¢, =0,2101 rad
O, = ¢, =0,2003 rad

r,=¢, =2,4cm
O, =¢, =10973 rad
ry =¢, =17cm

a, =C,=24cm
a,, =C,=50cm
a,, =¢,; =10cm
b=c,=04cm
a,=c,=51cm

-1
w,, =1lrad.s

Fig. 5.27 The computational model of the Stirling engine

a;; =¢, =6,0cm
a;, =C;; =50cm

a; =C,=24cCm

ag =C,=48cm

L, =c,=94cm

L, =c,=68cm

L, =c,, =19cm
L,=c,,=7,0cm
L. =c,,=7,0cm
L, =c,; =6,0cm

a =C,, =0,4907 rad

p =c,, =0,6338 rad
¥ =C,s =1,6258 rad
0=C,,=01411rad

-2
o, =0rad.s
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Fig. 5.28 Kinematic scheme of mechanism

The variables are:
(B, s s s s 5. By, 8] =[©,., 15, 0,,0;,0;,1,,0,, 1, ] (5.23)

Considering ABDA, ABCEFGHJA, EFGHJE and FKLMNF, the equations of the

position for the loop are:
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f, =—b—a, cos(¢ —y)—a, cosq=0

fo =—¢, +ay sin(f —y) +a;sinq=0

fy =—a, cosq—a,, cos(¢, —y + f) +a, Cos ¢, —as, cos(¢, +0)+L;— L, =0
f, =a;sing+ay,, sin(¢, —y + B) —a, sin g, + ag, sin(g, +8) — L =0

fo =—¢g COS @ — a4 COS ¢ — @, COS(P, + 5) + Ly =0

fe =g Sina + ag sin g + ag, sin(¢, +6)—L, =0

f, =—ag, oS¢, —ag cos¢; + L; =0

fg =ag, sing, +agsing;, +¢; —L, =0

(5.24)

If the equations of the positions (5.24) are differentiated on the basis of ~ ¢(i=1, 8)

variables, the system of velocity equations (5.25) is obtained and after further

differentiation, the system of acceleration equations (5.26) can be obtained.

f, = ayd sin(g —7) =-a,qsing

f ==, + ¢ cos(¢y — 7) =—a,qcosq

f3 =56 Sin(gy — ¥ + B) — 84 5in ¢ + a5, g siN(g, + ) = —aygsing
f4 =25 COS(4) — 7 + B) — ayds COS ¢ + a5, 4, COS(¢, + 5) = —a,( COS
fs =~ COS @ + agdhs SIN g + a5, SiN(¢, +5) =0

fs = @ SiN @ + aghs COS P + A5, COS(P, + 5) =0

f, = a4, sing, + a4, sing, =0

f, = a.,4, COS @, + 8, COS ¢, + ¢ =0

f, =a,d sin(d — 7) + andf cos(¢ —y) =—afsing—a,G* cosq

fo ==, + @y cos(g —7) —andy sin(d - y) =-a,cos q +a,4° sing
fa = a6 SiN(dy — 7 + B) + a4 COS(fy — 7 + B) —a,s Sin ¢y —a, 45 COS g5 +
+ a8, SiN(@, + ) +ag di cos(d, +5) =—a,4sinq—a,q° cosq

fa =250 cOS(¢ —y + B) — @yl sin(g —y + B)—a,ds; cos §; +

+8,05 Sin gy + 85,9, COS(4, +5) — a5 45 sin(g, +6) = -a,6cos q+2a,4° sing
fs = COS @ +agds SN g +aghe COS ds + s, ¢, SIN(B, +O) +ag, B2 COS(d, +5) =0
fo = g SiN @ + @55 COS g5 — a5 SiN g5 + 8510, COS(¢y +6) — a5, 45 sin(gy +5) =0
f; = —8s4 SiN ¢y — 85,7 COS ¢, — By, Sin ¢, — 8 COS P, =0

fg = a'529}54 COS ¢, _3524542 sing, +3'857 Cos ¢; _as¢.572 sin g, +¢8 =0

The equations from (5.27) up to (5.35) are valid and used for calculation of

kinematic values of distance, velocity and acceleration for D, K, J points.
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Xp =Db
Yo =& sing+ay sin(¢ —y) =4,

Xp =0
Yp =8,.GCcosq+ a21'¢1 cos(¢, —y) = ¢52

%o =0

Yp =a,.Gcosq— a1-q2 sing + a21'¢1 cos(dy —y) - az1-¢521 sin(g, - 7) :(Zz

X, =b
Y =a,Sing+ay, sin(¢, —y + f) —a,sing; +as, sin(g, +9) +as, sing, +
+agsing; =Lg+L, — ¢

%, =0
Yi =200+ 8y, ¢ COS(¢ — 7 + f) — 84453 COS ¢y + @5y 64 COS(¢, +S) +
+ 85,04 COS ¢y + 85 7 COS By =~y

% =0
Y =a,.6cosq— al'qz sing+ a22'¢-l cos(¢y —y +f)—ay, ¢12 sin(¢y —y + p) -
— .05 COS 5 + a4.q532 SiN @5 + g, ¢, COS(¢, + ) — a51-¢542 sin(g, +9) +

. ip . . -
+ ag,.¢, COS @, — 85,0, SiNG, + 85.¢; COSP; —ag.47 SN, =—¢g

X; =—a, C0Sq — a8y COS(¢ —y + [) +a, COS¢@; + a5 COS¢Ps =L, — @ COS @
y; =a;sinq+ay sin(¢, —y + f) —a, sing; —agsings =Lg — L, + ¢ COS

X5 =@a,.4SiNQ + ayy.¢ Sin(gy — ¥ + B) — 8,05 SiN Py — 85 .5 SIN ¢ = —5 COS
Yy =a,.0C0S 0 + @y ¢ COS(¢ — 7 + B) — 8,55 COS 3 — 5.4 COS f = g SiNcx

X5 =a,.45in q+2,.% COSq + a6, SiN(gy — ¥ + B) + gy B COS(¢h — 7 + B) —
— 2,5 Sin g5 — .5 COS P — a5 g SiN g5 — 8 g5 08 g =~ cOS x

¥y =2a,.c0sq—2a;.q° sinq + ay .4, COS(¢hy — 7 + ) — 8z 4 SiN(gh — y + ) —
— 8.5 COS b + 8,002 SiN ¢, — 8.5 COS Bs + Ag.B2 SIN g5 = gy SN
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The system of equations (5.25) is transformed to matrix form (5.36) as well as the

system of equations (5.26) is transformed to the matrix form (5.37).

a,, sin(éy —7)
8,1 COS(¢y — 7)
ay, sin(gy — 7 + B)
ay, Cos(fy — 7 + B)

0
0
0
| 0
_¢1_ [—a,gsing |
¢, | |—adcosq
b —a,gsing
' bs _|~adcosq
ds 0
P 0
¢ 0
] L 0
ay; sin(éy —7)
ap1 COS( — ¥)
Ay, sin(g, —y + )
Ay, cos(dy —y + )
0
0
0
0

0 0 0 0 0 0
-1 0 0 0 0 0
0 -—a,sing; +agsin(g, +9) 0 0 0
0 -—a,cos¢; ag cos(@, +0) 0 0 0
0 0 +ag sin(¢, +J) agsings —cosa 0
0 0 ag, cos(¢, +8) agcos¢gs Sina 0
0 0 as, Sing, 0 0 ag sin ¢,
0 0 ag, COS ¢, 0 0 ag COS ¢,
0 0 0 0 0 0 0]
1 0 0 0 0 0 0
0 —a,sing; ag;sin(g, +95) 0 0 0 (0]
0 —a,cos¢; ag, cos(d, +0J) 0 0 0 0]
0 0 as, sin(¢, +5) agsings —cosa 0 0
0 0 as, cos(¢, +J) agCcosgs sina 0 (0]
0 0 as, sing, 0 0 agsing, O
0 0 ag, COS ¢, 0 0 agcosg, 1|

—ay ¢ cos(é — y) —aytising—a,4° cosq

ay ¢ sin(g, — ) —aGcosq+a,4° sinq

- ae¢'552 COS ¢ — a51¢342 cos(¢, + )

;2 ;2
—as,¢; COS @, —agPh; COS g,
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ag, @72 sin g, + agds sin g,

a6¢'552 sin ¢ "‘35147342 sin(g, + )

#
#s

| 44

Ps

| 25 |

28 COS(¢hy — ¥ + B) + 8,85 COS $ — a5, 4 cos(g, + &) —ayising —a,q® cosq
Az SIN(y — 7 + B) — @43 Sin ¢y + a5, 45 sin(gh, + S5) —aycosq +a,4”sing

(5.36)

(5.37)



The results from the kinematic analysis

e 1Y)

r9,r3, r7 (cm)

Angular rotation of crank q (°)

Fig. 5.29 The course of displacements for D, L, J points in dependence on angular
rotation of crank

—19

ro, r'3,r’7 (cm/s)

Angular rotation of crank q (°)

Fig. 5.30 The course of velocity for D, L, J points in dependence on angular
rotation of crank
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Angular rotation of crank q (°)

Fig. 5.31 The course of acceleration for D, L, J points in dependence on angular
rotation of crank

Course of angular position for individual bodies in
dependence on angular rotational displacement of crank
0, 25
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0s 15
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[rad] 0
-0.5 122 162 202 242 28 362 402 442 482
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Fig. 5.32 The course of angular position for individual bodies in dependence on
angular rotation of crank
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Course of angular speed (velocity) for individual bodies in
dependence on angular rotational displacement of crank

0, 08

€)4 0.6

% 04
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'98 0.2
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-0.2
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al®]

Fig. 5.33 The course of angular velocity for individual bodies in dependence on
angular rotation of crank

Course of angular acceleration for individual bodies in
dependence on angular rotational displacement of crank

0,
0, 2
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9 05
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0.5 2:
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Fig. 5.34 The course of angular acceleration for individual bodies in dependence
on angular rotation of crank
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Rotational displacement of crank by 120°

v

Rotational displacement of crank by 180° Rotational displacement of crank by 300°

1l T

Fig. 5.35 Animation of the motion (movement) of the mechanism
5.5 Kinematic Analysis of the Pressing Machine

In relation to the six-item mechanism [39] (mechanism with the six members), the
field of positions, speeds (velocities) and accelerations is going to be solved by the
vector method. The numerical solution is carried out for the specified input values

(5.38) if the specified angle of rotational displacement for the driving item
(member), designated as 2, is: q=¢, =315"and the revolutions per minutes are: n
= 3.5 rpm. The mechanism represents a pressing machine (Fig. 5.36), the
kinematic scheme of which can be seen in Fig. 5.37. Formation of the equations of
the position (5.40), (5.41) the differentiation of which, for ¢(i=1234) variables,
gives the specific equations for the speeds (velocities) (5.42) and then the given

equations are rewritten into a matrix form (5.44). If the equations (5.42) are
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differentiated once more, we can get equations (5.43) for the accelerations and the
given equation can be rewritten into a matrix form (5.45).

To simplify the numerical solution, the solution can be carried out by help of
the submatrix equations (5.46) and (5.47). The given solution was carried out by
using the SolidWorks and the results of the kinematic analysis are shown in Figs.

5.38, 5.39, 5.40 and the animation for the first four positions is shown in Fig. 5.41.

1200 .
Y
4  
450 . \mm o e
T S ila Y

2

Fy

(3,

°

__(
>

>

I1x

Fig. 5.37 Kinematic scheme of the given mechanism

Input parameters:

BA=1,=025m,AC =I,=1.44m,CE=1,=05m,CD=I,=05m,

5.38
q=¢, =315° ¢, =10°, ¢, =85, ¢, =275°,n =3.50t/min. (5.38)
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The variables are:

1. 62.05.04 =05, 04,05 1, | (5.39)
The equations of the position for the BACEB loop are:

f, =1, 05, +15 0S5 +1, COS @, + 1y, =0, (5.40)

The BE vector can be rewritten into two vectors in the direction of the coordinate

axes. The position equations for the BACDB loop are:

f; =1,c0s ¢, +15c0S @5 + 15 cos g +1g, =0,
f4 =1,5iN@, +l35in @5+l singg +1g, =0. (5.41)

The BD vector is rewritten into two vectors in the direction of the lgy, lsx coordinate

axes:

f, =—1,.9,.8inp, —l3.¢;Sin@; — 1,0, Sing, =0,

: o S o (5.42)
fs =—15.00,.5IN 0, —15.055IN 3 5 sin 5 =0,
f4 =15.00,.C08 0, +l5.023.05 @ + |5 .95.COS 5 + g, =0
fy = 15050080, 1.6, 5IN @, ~ 5,63 COS 3 — 3.3 5IN 93 — 455 COS @, — 1,3, SN, =0,
f, =—l,.02.5iN@, +1,.0,.008 0, — 5.2 SiN @5 + 5.5, COS 5 — |, sin g, +1,63, COS @, =0, (5.43)
fy = 1,03 .C08 0, —,.33,.5iN 0, —l3.953 COS 3 13,453 5N 3 ~ I pZ COS 95 — I P Sin s =0, -
fy =—lp.02 5N @, +1,.63,.C08 @, —15.¢9% SiN @y + 13095 C0S 5 — |52 SN 5 + 1595 COS o5+, =0
—l3sing, —1,sing, 0 0|l @ l,.sin g,
l;cosp, 1,cos¢, 0 0| @a| |—l.cos9, |,
—l,sing, 0 lgsings O] @5 | | Lysing, |2 (5.44)
| cos ¢, 0 lscosps  1||lsy | |—1,.co80,
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—lysing; —1,sing, 0 0||| #5 l,.cos ¢, l,.sing,
l;cosp, 1,cos9, 0 O||@a|| |l2sing, |, |—l.cos, |,
—l,sing, 0 —lsings O] & || |l,.cosp, l,.singp, | °
5 cos g, 0 lcosps 1 igy l,.singp, —I,.cos ¢,
» (5.45)
|5.cos ¢, l,.9; cosg,
. ls.sing; |, | 1,.02sing,
l,.C0S @5 |22 COS s
l,.sin @, |52 sin s
5.46
where
A= , Xo=| 7|, Pr= P2,
[—lgsing, 0 @5 l,sing l5sin @
A, = Xy = Py=| g+ ° ?s
| Iscospy 1 I —1, cos g, —1;cos ¢,

where
|1, cos e, 2 l,sinp, | .
Y sing, 72| 1, c0s0, |72
A X, - —l;cosp; -l co50, | ,° ~
ST sin —1,sin A T
35N @ 4SMNQ, | @, |5 sin g5
l,cos, |. , l,sing, |. l;cos; | .,
= . si P, + P, + . @3 +
—1,sing, —1, cos g, | —l5sing,
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.2 .2
I3 cos 303"  +1, COS 0,004

|
3

+1,sinp,p,°

I;sin @,
— 15 cos ¢,



: —1; cos 0] .2 I cos
_Azxzz{ e Ps }(05 :{5 _ Ps }(bsz-
—lgsings O I 5 sin @
It is important to point out that the following condition is valid:
2mn 2735

60 60

0)21 = ¢2 = = O,3665rad / S, C()31 = ¢3, a)41 = §b4 y a)51 = ¢5 ’

Ver = —lgy

oy =@, =0rad/s,az = @s,041 = @y, 051 = P5 86 =gy

The results of the kinematic analysis:

400 0.6
P,
o 300 N\ | Los )
. [m | '
e 2007 e @ 0.2
1°]
1007 o=~ A0, 0
\\ PR
0. L 02
200 400 600 800 200 400 600 800
@,1°| 9" |

Fig. 5.38 Course of the position for individual items (bodies) of the mechanism

200 400 600 800 200 400 800 800
p,1°] 0,1

Fig. 5.39 Course of the speeds (velocities) for the individual bodies of the
mechanism
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Fig. 5.40 Course of the acceleration for the individual bodies of the mechanism
to ! ta I t2
Tt g [ts

ts

Fig. 5.41 Animation of the four positions of the mechanism
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5.5.1 Dynamic analysis of planar mechanism

The main objective of the dynamic analysis is connected with specification of the
loading for the individual items and determination of the courses relating to mutual
reactions, referring to individual kinematic connections [4, 10-12]. The analysis
was based on utilisation of the nonlinear model. Relating to the analysis, the other

important values were utilised:

- modulus of elasticity (Young’s modulus): E = 210 GPa,
« Poisson’s ratio: p = 0.3,

. density of material: p = 7850 kg m >,

The analysis of the planar mechanism is based on selection of the linear tetrahedral
element with four nodes (see chapter 2.2).
Fig. 5.42 represents the course of the reaction in D point of the body, designated
as 6 and Fig. 5.43 represents the course of the reaction in A point of the body,
designated as 3. Fig. 5.44 shows the degraded degrees of freedom of the given
mechanism. The network of finite elements of the planar mechanism can be seen
in Fig. 5.45.

1500 - Dx
1000 -
500 - /\
0 / T 1
Z  -500 ¢ 0
L  -1000 -
-1500 -|
-2000 -|
-2500 -|
-3000 -
time [s]

Fig. 5.42 Course of the reaction in D point of the item (body), designated as 6 —
depending on time.
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-800 +
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Fig. 5.43 Course of the reaction in A point of the item (body), designated as 3 —
depending on time.

Fig. 5.44 Degraded degrees of freedom of the mechanism.
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Fig. 5.45 Finite element network.

The distribution of the stress for mechanism [13, 14] can be seen in Fig. 5.46 and
distribution of the displacement for mechanism is shown in Fig. 5.47.

won Mises IN/m"2)
1EBest
e 04
15520404
14236404
12650004

L 110Tes0d
”’T 9450408
7.208e403
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47450403

3183403
15020400
Q000e 400

# Vield strength: 6.20de+03

Fig. 5.46 Distribution of the stresses (Pa) for the mechanism.
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Fig. 5.47 Distribution of the displacement (mm) for the mechanism

5.6 Kinematic Analysis of the manipulator for removal of rough tyres

The manipulator for removal of rough tyres (Fig. 5.48) is composed of twenty-
five individual bodies which are held together by help of kinematic connections
and it is in the accordance with real state. The computational model of the

manipulator can be seen in the Fig. 5.49.

Fig. 5.48 The manipulator for removal of rough tyres
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Using the kinematic analysis [32, 34, 35, 38], the main objective of solution is
connected with the determination and entering of the position domains, speed

(velocity) domains as well as acceleration of the individual items (members or

Fig. 5.49 Computational model of the manipulator

bodies) in relation to the specified input values and it can be seen in the Tab. 5.1.

Tab. 5.1 Influences of external forces and kinematic phenomena on manipulator

removing

1. maximum gravity or load capacity, using 22.5” tyre 80 kg

2.| speed (velocity) of movement for manipulating item 400 mm.s™
(member) in horizontal direction

3./ speed (velocity) of movement for manipulating item 90 mm.s*
(member) in vertical direction

4./ speed (velocity) of disengaging for clamps used for 20 mm.s?

The simulation of operation relating to manipulator can be seen in the Fig.

5.50. In the given figure, there are 6 steps relating to technology of removing and

manipulation with the tyre:
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1. clamping of the tyre

2. removing of the tyre from the transferring of assembling or building up line
3. inspection of the tyre by operator

4. removing of the tyre above the rotating storage bin

5. tilting of the tyre

6. placing of the tyre into the rotating storage bin

It has to be pointed out that each one of the mentioned positions or steps is
closely connected with specific influence referring to loading process of backbone
frame of the manipulator.

Fig. 5.50 Simulation of manipulator operation

In the Fig. 5.51, there is the tyre, which is clamped in the clamps of
manipulator as well as there is also the physical model for clamping mechanism.
The course of the speed (velocity) as well as the acceleration of the movement of

displacement rail or frame can be seen in the Fig. 5.52 and Fig. 5.53.
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Fig. 5.51 Manipulator clamps and clamping mechanism for tyre clamping
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Fig. 5.52 Speed of the motion (movement) of the displacement rail (frame)
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Fig. 5.53 Acceleration of the motion (movement) for the displacement rail
(frame)
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6 Kinematic and Dynamic Analysis and Distribution of
Stress for Planar Mechanisms by Means of SolidWorks
Software

In order to create a model of the mechanism, the calculation program uses the
elements by help of which the resulting mechanism (system of bodies) is
assembled and the motion equations of the mechanism are created by combination
of the equations for the individual members or items of the mechanism. The
individual elements are: connection of a body point with a frame, connection of
points of two bodies, rotary (articulated or joint) connection of two bodies, sliding
connection of two bodies, connection of two bodies by help of a drawbar with
articulated (joint) end, with two sliding ends and combination of joint with sliding
end, rope connection , wheels - rolling, cams, connection of a point with a curve
and a surface, spherical joints and their various connections, linear spring and
damper, absolute drives, relative drives and linear drives.

6.1 Kinematic and Dynamic Analysis and Distribution of Stress for Four-
Item Mechanism

The planar mechanism representative (Fig. 6.1) consists of four bodies and was
used as computational model. Using the kinematic analysis and dynamic analysis
and subsequent simulation [30], the main objective is connected with the
determination and entering of the position domains, speed (velocity) domains as
well as acceleration of the individual bodies in relation to the specified input values
of the angular velocity for the driving body, designated as 2. The angular velocity
for the body, designated as 2, is specified in this way: ®21=36 [°/s], where ®21=36
[°/s] is constant and it is changed in dependence on time (Fig. 6.2).

Specified input values can be seen in (Fig. 6.1).
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Fig. 6.1 Planar mechanism — computational model

Course of input value for angular velocity can be seen in Fig. 6.2 and angular

acceleration of 2, 3, 4 bodies in dependence on time can be seen in Fig. 6.3.

Angular velocity of 2, 3, 4 bodies in dependence
on time
—~ 2
P 40 -
z %07 —~
g ol 2« N\
z 0 \.——/\ T \\4/ T 1
< 0 2 4 6 8 10
()] .
= time (s)

Fig. 6.2 Angular velocity of 2, 3, 4 bodies in dependence on time

Angular acceleration of 2, 3,4 bodies in dependence on
time

g 2
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Ol 10 3 //2 -
g2 ] — —
5 59 2 4 6 8 10
o time (s)
a

Fig. 6.3 Angular acceleration of 2, 3, 4 bodies in dependence on time
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The simulation of operation relating to planar mechanism can be seen in the Fig.
6.4 and it is for time step referring to one second while the whole simulation takes
place for ten seconds

/1 |

t=1s t=2s
Lﬁiﬁ — 7ﬂ7
t=3s
A

t=5s t=6s

t=7s t=8s

—

»

t=9s t=10s
Fig. 6.4 Simulation of planar mechanism operation for ten positions
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The whole course of the velocity and acceleration for C, D, E points of bodies can

be seen in Fig.6.5 and Fig.6.6.

v (mm/s)
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Fig. 6.5 Velocity in points (C, D, E) — in dependence on the time
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Fig. 6.6 Acceleration in points (C, D, E) — in dependence on the time

The main objective of the dynamic analysis is connected with specification of the

loading for the individual items and determination of the courses relating to mutual

reactions, referring to individual kinematic connections. Fig. 6.7 represents the

course of the reaction in C point of the body, designated as 2 and Fig.6.8 represents

the course of the reaction in B point of the body, designated as 4.
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Fig. 6.7 Course of the reaction in C point of the body, designated as 2 — in
dependence on the time
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Fig. 6.8 Course of the reaction in B point of the body, designated as 4 —in
dependence on the time

6.1.1 Type of finite elements and material properties

The analysis of the planar mechanism is based on selection of the linear tetrahedral
element with four nodes (see chapter 2.2).

The analysis is based on utilisation of the linear model. Relating to the analysis, the
other important values are utilised:

- modulus of elasticity (Young’s modulus): E = 2.1 ¢** (Pa),

- Poisson’s ratio: p = 0.3,

- density of material: p = 7850 (kg.m™).
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6.1.2 Distribution of the Stress in Items of Planar Mechanism

The distribution of the stress for connected bodies, designated as 1, 2, 3, 4, can be
seen in Figs. 6.9-6.16.

Model name: 1
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Fig. 6.9 Distribution of the stress for body, designated as 1 in [ Pa ]
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Fig. 6.10 Course of the stress for body, designated as 1 — in dependence on the
time
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Model name: 2
Study name: ALT-Frame-4
Flot type: Static nodal stress Plot2
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Fig. 6.11 Distribution of the stress for body, designated as 2 in [ Pa ]

30000000
25000000
20000000 +
15000000 -
10000000 -
5000000 -
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

von Mises stress [Pa]

time [s]

Fig. 6.12 Course of the stress for body, designated as 2 — in dependence on the
time
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Fig. 6.13 Distribution of the stress for body, designated as 3 in [ Pa ]
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Fig. 6.14 Course of the stress for body, designated as 3 — in dependence on the
time
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Fig. 6.15 Distribution of the stress for body, designated as 4 in [ Pa ]
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Fig. 6.16 Course of the stress for body, designated as 4 — in dependence on the
time
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6.2 Kinematic Analysis and Distribution of Stress for Five-ltem Mechanism

The planar mechanism representative (Figure 6.17) consists of five bodies and it
was used as computational model. Using the kinematic analysis and subsequent
simulation, the main objective is connected with the determination and entering of
the position domains, speed (velocity) domains as well as acceleration of the
individual bodies in relation to the specified input values of the angular velocity for
the driving body designated as 2. The angular velocity for the body, designated as
2, is specified in this way: ®21=36 [°/s], where ®21=36 [°/s] is constant (Figure
6.23). The dimensional parameters of individual bodies are shown in Figures 6.18-
6.22.

Fig. 6.17 Planar mechanism — computational model
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Fig. 6.18 Frame, designated as 1 and its dimensional parameters in [ m ]
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Fig. 6.19 Item or body (member), designated as 2 and its dimensional parameters
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Fig. 6.21 Item 4 and its dimensional parameters in [ m ]
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Fig. 6.22 Item or body (member) 5 and its dimensional parameters in [ m ]

Course of input value for angular velocity can be seen in Figure 6.23 and angular

acceleration of 2, 3, 4, 5 bodies in dependence on time can be seen in Figure 6.24.

4,0E+01
3,5E+01
3,0E+01
2,5E+01 e it 3-1
2,0E+01
1,5E+01
1,0E+01 item 5-1

5,0E+00
R e,
0,0E+00 !

012345678910

—e—item 2-1

item 4-1

angular velocity (deg/s)

time (s)

Fig. 6.23 Angular velocity of 2, 3, 4, 5 bodies (members or items) in dependence
on the time
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Fig. 6.24 Angular acceleration of 2, 3, 4, 5 bodies (members or items) in
dependence on the time

The simulation of 4 positions can be seen in Figure 6.25.
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Fig. 6.25 Simulation of planar mechanism operation for four positions
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Course of the velocity or speed can be seen in Figure 6.26 and acceleration of 2, 3,

4, 5 bodies in dependence on time can be seen in Figure 6.27.
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Fig. 6.26 Velocity or speed of bodies for 2, 3, 4, 5 — in dependence on the time
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Fig. 6.27 Acceleration of bodies for 2, 3, 4, 5 — in dependence on the time
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6.2.1 Type of finite elements and material properties

The analysis of the planar mechanism is based on selection of the linear tetrahedral
element with four nodes (see chapter 2.2).

The analysis is based on utilisation of the linear model. Relating to the analysis, the
other important values are utilised:

- modulus of elasticity (Young’s modulus): E = 2.1 ¢** (Pa),

- Poisson’s ratio: p = 0.3,

- density of material: p = 7850 (kg.m™).

6.2.2 Distribution of the Stress in Items of Planar Mechanism

The distribution of the stress for individual bodies (items or members), designated
as 1, 2, 3,5, can be seen in Figs. from 6.28 to 6.35.
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Fig. 6.28 Distribution of the stresses [Pa] for body, designated as 1
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Fig. 6.29 Course of the stresses for body, designated as 1 — in dependence on the
time
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Fig. 6.30 Distribution of the stresses [Pa] for body, designated as 2
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Fig. 6.31 Course of the stresses for body, designated as 2 — in dependence on the
time
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Fig. 6.32 Distribution of the stresses [Pa] for body, designated as 3
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Fig. 6.34 Distribution of the stresses [Pa] for body, designated as 5
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6.3 Kinematic and Dynamic Analysis and Distribution of Stress for Six-ltem
Mechanisms

The planar mechanism representative (Fig. 6.36) consists of six bodies and was
used as computational model. Using the kinematic analysis and dynamic analysis
and subsequent simulation [33], the main objective is connected with the
determination and entering of the position domains, speed (velocity) domains as
well as acceleration of the individual bodies in relation to the specified input values
of the angular velocity for the driving body designated as 2. The angular velocity
for the body, designated as 2, is specified in this way: ®2;=1 [°/s] and 02,=0,7
[°/s%], where ®21=1 [°/s] is not constant and it is changed in dependence on time

(Fig. 6.37). Specified input values can be seen in Fig. 6.38.
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Fig. 6.36 Planar mechanism — computational model
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Course of input value for angular velocity and angular acceleration is in Fig. 6.37
and Fig. 6.38.

Angular velocity of 2, 5, 6 bodies in dependence on time
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Fig. 6.37 Angular velocity of 2, 5, 6 bodies in dependence on the time
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Fig. 6.38 Angular acceleration of 2, 5, 6 bodies in dependence on the time

The simulation of operation relating to planar mechanism can be seen in the Fig.
6.39 for time step referring to one second while the whole simulation takes place

for ten seconds.
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Fig. 6.39 Simulation of planar mechanism operation for ten positions



The whole course of the velocity and acceleration for C, D, E, F points of bodies

can be seen in Fig.6.40 and Fig.6.41.

350
300 1
/:/
_. 250 £ :
Y iyl
€ 200 _~"F J/
£ - e D
~ 150 P /
— -
100 - _ [ —
- C
-
0
0 2 4 6 8 10
time [s]

Fig. 6.40 Velocity in points (C, D, E, F) — in dependence on the time
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Fig. 6.41 Acceleration in points (C, D, E, F) — in dependence on the time

The main objective of the dynamic analysis is connected with specification of the
loading for the individual items and determination of the courses relating to mutual
reactions, referring to individual kinematic connections.

Fig. 6.42 represents the course of the reaction in F point of the body, designated as
6 and Fig.6.43 represents the course of the reaction in D point of the body,

designated as 5.
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Fig. 6.42 Course of the reaction in F point of the body, designated as 6 — in
dependence on the time
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Fig. 6.43 Course of the reaction in D point of the body, designated as 5 — in
dependence on the time

6.3.1 Type of finite elements and material properties

The analysis of the planar mechanism was based on selection of the linear
tetrahedral element with four nodes (see chapter 2.2).

The analysis was based on utilisation of the linear model. Relating to the analysis,
the other important values were utilised:

- modulus of elasticity (Young’s modulus): E = 2.1 ¢** (Pa),

- Poisson’s ratio: pu = 0.3,

- density of material: p = 7850 (kg.m™).
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6.3.2 Distribution of the Stress in Items of Planar Mechanism

The distribution of the stress for connected bodies (items or members), designated
as 1, 2, 3,5 can be seen in Figs. from 6.44 to 6.51.
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Fig. 6.44 Distribution of the stress for body, designated as 1 in [ Pa ]
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Fig. 6.45 Course of the stress for body, designated as 1 — in dependence on the
time
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Fig. 6.46 Distribution of the stress for body, designated as 2 in [ Pa ]
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Fig. 6.47 Course of the stress for body, designated as 2 — in dependence on the
time
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Fig. 6.48 Distribution of the stress for body, designated as 3 in [ Pa ]
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Example 1

The planar mechanism representative (Fig. 6.52) consists of six bodies and it is
used as computational model. Using the kinematic analysis and dynamic analysis
and subsequent simulation [33], the main objective is connected with the
determination and entering of the position domains, speed (velocity) domains as
well as acceleration of the individual bodies in relation to the specified input values
of the angular velocity for the driving body, designated as 2. The angular velocity
for the body, designated as 2, is specified in this way: ®21=20 [°/s] and 02,=0,7
[°/s?], where w1 is not constant and it is changed in dependence on the time

(Fig.6.53). Specified input values can be seen in Figure 6.54.
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Fig. 6.52 Planar mechanism — computational model

Course of input value for angular velocity and angular acceleration is in Fig.6.53
and Fig.6.54.
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Angular velocity of 2, 3, 4, 5, 6 bodies in dependence on

time
_ 60
n
= 50 5
> 40
2 a0
(=]
g 20 /3\ 4
S 10 y ~ 5
=
20
® 100 2 4 6 8 10
time [s]

Fig. 6.53 Angular velocity of 2, 3, 4, 5, 6 bodies in dependence on the time

Angular acceleration of 2, 3, 4, 5, 6 bodies in dependence
on time
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Fig. 6.54 Angular acceleration of 2, 3, 4, 5, 6 bodies in dependence on the time

Relating to planar mechanism, the simulation of operation can be seen in the Fig.
6.55 for time step referring to one second while the whole simulation takes place
for ten seconds.
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Fig. 6.55 Simulation of planar mechanism operation for ten positions

The whole course of the velocity (speed) and acceleration for C, D, E, F points
of bodies can be seen in Fig.6.56 and Fig.6.57.

103



500

450
400 /
350

= 300 - =

£ 250 4 E
E 20 __— 4 —
> 150 i F

100 G

50

0
-50 0 2 4 6 8 10
time [s]

Fig. 6.56 Velocity (speed) in points (D, E, F, G) — in dependence on the time
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Fig. 6.57 Acceleration in points (D, E, F, G) — in dependence on the time

The main objective of the dynamic analysis is connected with specification of
the loading for the individual items (members or bodies) and determination of the
courses relating to mutual reactions, referring to individual kinematic connections.
The analysis was based on utilisation of the linear model. Relating to the analysis,
the other important values were utilised:

- modulus of elasticity (Young’s modulus): E =210 [GPa],

- Poisson’s ratio: p = 0.3,

- density of material: p = 7850 [kg.m™].

Fig. 6.58 represents the course of the reaction in D point of the body, designated as
2 and Fig.6.59 represents the course of the reaction in C point of the body,
designated as 1.

104



5000 +
4000 -
3000 ~ Fx
2000 -
1000 -

FIN]

-1000 ¢ 5
-2000 7//\/ F
-3000 -

-4000 -

time [s]

Fig. 6.58 Course of the reaction in D point of the body, designated as 2 — in
dependence on the time
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Fig. 6.59 Course of the reaction in C point of the body, designated as 1 —in
dependence on the time

The distribution of the stress for bodies, designated as 1, 2, 3, 4 can be seen in Figs.
from 6.60 to 6.67.

Pit type: o
Deformation scale: von Mises (Nim2)
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53826007
479924007
| 421504007
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—Pield strength: 2.068e+008

Fig. 6.60 Distribution of the stresses [Pa] for body, designated as 1
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Fig. 6.61 Course of the stresses for body, designated as 1 — in dependence on the
time
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Fig. 6.62 Distribution of the stresses [Pa] for body, designated as 2
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Fig. 6.63 Course of the stresses for body, designated as 2 — in dependence on the
time
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Model name: 3

Stucly name: ALT-Frame-1

Plot type: Static nodal stress Plott

Deformation scale: 1 o M (N2
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Fig. 6.64 Distribution of the stresses [Pa] for body, designated as 3
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Fig. 6.65 Course of the stresses for body, designated as 3 — in dependence on the
time
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Plot type: Static nodal stress Plot1
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Fig. 6.66 Course of the stresses [Pa] for body, designated as 4
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Fig. 6.67 Course of the stresses for body, de_signated as 4 — in dependence on the
time

Example 2
The planar mechanism (Fig. 6.68) represents mechanism consisting of six bodies.
Using the kinematic analysis and dynamic analysis and subsequent simulation [31],
the main objective is connected with the determination and entering of the position
domains, speed (velocity) domains as well as acceleration of the individual bodies
in relation to the specified input values of the angular velocity for the driving body
designated as 2. The angular velocity for body, designated as 2 is specified:

wy =361,

Input values:
a=17[m],b=13[m],c=0.1[m], h=0.1[m] (thickness of bodies), I,=0.5 [m],
l;=0.1 [m], l,=1.4 [m], 5=1.4 [m], lg=0.9 [m].

a ’ b
G 1 A E
[ WIA 2 lz
le| || 6 ] - .
B / (e 14
F 5 3
Is D C

I3

Fig. 6.68 Planar mechanism
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The simulation of operation relating to planar mechanism can be seen in the Fig.
6.69 for time step referring to one second while the all simulation takes place for
ten seconds.

t=1s t=2s t=3s

t=4s t=5s t=6s

t=7s t=8s

t=9s t=10s
Fig. 6.69 Simulation of planar mechanism operation

The whole course of the velocity and acceleration for B, C, D, F points of bodies
can be seen in Fig.6.70 and Fig.6.71.
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Fig. 6.70 Velocity (speed) of B, C, D, F points in dependence on the time
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Fig. 6.71 Acceleration of B, C, D, F points in dependence on the time

The computational model of the planar mechanism can be seen in the Fig. 8.72.

Fig. 6.72 Computational model of the planar mechanism
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The main objective of the dynamic analysis is connected with specification of
the loading for the individual items and determination of the courses relating to
mutual reactions for individual kinematic connections. The analysis was based on
utilisation of the linear model. Relating to the analysis, the other important and
utilised input values are:

- modulus of elasticity (Young’s modulus): E = 2.1 e’ (Pa),
- Poisson’s ratio: 4 = 0.3,

- density of material: p = 7850 (kg.m™).

Fig. 6.73 represents the course of the reaction in E point of the body, designated as
4 and Fig. 6.74 represents the course of the reaction in F point of the body,

designated as 6.

6000
5000 |
4000 1
3000
2000 |
1000

0
-1000 {
-2000 1
-3000

F(N)

time (s)

Fig. 6.73 Course of the reaction in E point of the body, designated as 4 in
dependence on the time

F(N)

time (s)

Fig. 6.74 Course of the reaction in F point of the body, designated as 6 in
dependence on the time
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Moreover, the distribution of the stress for bodies, designated as 1, 3, 6, can be
seen in Figs. 6.75-6.77.

Model name: 1

Study name: ALT-Frame-5

Plot type: Static nodal stress Plot1

Deformation scale: 1 von Mises (N2
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Fig. 6.75 Distribution of the stress for body, designated as 1

Model name: 3
Study name: ALT-Frame-8
Flot type: Static nodal stress Plott
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Fig. 6.76 Distribution of the stress for body, designated as 3

Model name: 5
Study name: ALT-Frame-5
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Fig. 6.77 Distribution of the stress for body, designated as 6
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Example 3

The planar mechanism representative (Fig. 6.78) consists of six bodies and it was
used as computational model. Using the kinematic analysis and dynamic analysis
and subsequent simulation [29], the main objective is connected with the
determination and entering of the position domains, speed (velocity) domains as
well as acceleration of the individual bodies in relation to the specified input values
of the angular velocity for the driving body, designated as 2. The angular velocity
for body, designated as 2, is specified in this way: ©2;=20 [°/s] and 0;=3.2 [°/sz],
where ©21=20 [°/s] is not constant and it is changed in dependence on time (Fig.
6.79).

Specified input values:
a=15[m],b=15[m],c=0.1[m], h=0.1[m] (thickness of bodies), I, = 0.5 [m],
b=14 [m], ,=1.6 [m], 15=1.3 [m], ls=2,2 [m].

>Y o 0O
Q
»

Fig. 6.78 Planar mechanism — computational model

Course of input value for angular velocity and angular acceleration can be seen in
Fig. 6.79 and Fig. 6.80.
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Angular velocity of 2, 3, 4, 5 bodies in
dependence on time

Fig. 6.79 Angular velocity of 2, 3, 4, 5 bodies in dependence on the time

Angular acceleration of 2, 3,4, 5 bodies
in dependence on time

o o

angular acceleration (°/s"2)

0 2 4 time (3)6 8 10

Fig. 6.80 Angular acceleration of 2, 3, 4, 5 bodies in dependence on the time

The simulation of planar mechanism operation for four positions can be seen in the
Fig. 6.81.

Fig. 6.81 Simulation of planar mechanism operation for four positions
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The whole course of the velocity (speed) and acceleration for C, D, F points of

bodies can be seen in Fig. 6.82 and Fig. 6.83.

600 -
500
400

v

£ 300

E

> 200

100

0

time (s)

Fig. 6.82 Velocity in points (C, D, F) — in dependence on the time

a (mm/s”2)

Fig. 6.83 Acceleration in points (C, D, F) — in dependence on the time

The main objective of the dynamic analysis is connected with specification of the
loading for the individual items and determination of the courses relating to mutual
reactions for individual kinematic connections. The analysis was based on
utilisation of the linear model. Relating to the analysis, the other important and
utilised values were:

- modulus of elasticity (Young’s modulus): E = 2.1 ¢** (Pa),

- Poisson’s ratio: p = 0.3,

- density of material: p = 7850 (kg.m™).
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Fig. 6.84 represents the course of the reaction in E point of the body, designated as
4 and Fig. 6.85 represents the course of the reaction in D point of the body,

designated as 3.
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3000
2000 - Fx
= 1000 - ——-Fy
:L/ 0 - ™ - i M| em————— Fz
2

time (s)

Fig. 6.84 Course of the reaction in E point of the body, designated as 4 — in
dependence on the time
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4000 -
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Fig. 6.85 Course of the reaction in D point of the body, designated as 3 — in
dependence on the time

The distribution of the stress for connected bodies, designated as 1, 4, 5, 3, can be

seen in Figs. 6.86-6.93.
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Model name: 1
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Plot type: Static nodal stress Plott
Deformation scale: 1 vor Misss (Ni2)
4.553e+007
4473e+007
| 379484007
_3.415e+007
_3.036e+007
| 2657e+007
2278e+007
1.898e+007
1.5192+007
11404007
7.609e+006
3.818e+006
2585e+004
—PVield strength: 2.068e+008

H

Fig. 6.86 Distribution of the stress for body, designated as 1 in [Pa]
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Fig.

6.87 Course of the stress for body designated as 1 — in dependence on
the time

Model name: 4
Study name: ALT-Frame-8
Plot type: Static nodal stress Plot2
Deformation scale: 1 von Mises (NiT2)
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Fig. 6.88 Distribution of the stress for body, designated as 4 in [Pa]
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Fig. 6.89 Course of the stress for body, designated as 4 — in dependence on the
time
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Study name: ALT-Frame-5
Plot type: Static nodal stress Plot2
Deformation scale: 1 von Mises (Nin"2)
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Fig. 6.90 Distribution of the stress for body designated as 5 in [Pa]
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Fig. 6.91 Course of the stress for body designated as 5 — in dependence on the
time
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Model name: 5
Study name: ALT-Frame-5
Plot type: Static nodal stress Plot2
Deformation scale: 1 von Mises (N/m"2)
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Fig. 6.92 Distribution of the stress for body, designated as 3 in [Pa]
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Fig. 6.93 Course of the for body, designated as 3 — in dependence on the time
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Example 4

The planar mechanism representative (Fig. 6.94) consists of five bodies and it
was used as computational model. Using the kinematic analysis [1-2] and
subsequent simulation [7-9], [15], the main objective is connected with the
determination and entering of the position domains, speed (velocity) domains as
well as acceleration of the individual bodies. In relation to the five-item mechanism
(mechanism with the five members), the field of positions, speeds (velocities) and
accelerations is going to be solved by the vector method. The numerical solution is
carried out for the specified input values (6.1) if the specified angle of rotational

displacement for the driving item (member), designated as 2, is: $21 = 210° and the
angular velocity for the body, designated as 2 is w»;=10 rad.s.; = konst. The

kinematic scheme of which can be seen in Fig. 6.95. Formation of the equations of

the position (6.3), (6.4), (6.5) the differentiation of which, for % 123456)
variables (6.2), gives the specific equations for the speeds (velocities) (6.6) and
then the given equations are rewritten into a matrix form (6.7). If the equations
(6.6) are differentiated once more, we can get equations (6.8) for the accelerations
and the given equations can be rewritten into a matrix form (6.9).

o

®5

Fig. 6.94 Computational model
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E

Fig. 6.95 Kinematic scheme of the given mechanism

Input parameters:

AB =1, =0.04 m,BC =1, =0.05m, EF =I; =0.08 m, BE =0.08 m, CE =1, =0.03m,

Ye =0.05m, X =0.05m, a=0.005m
@y =210°, o5, =225, @y =140°,

@y =10rad.s™ = konst
The variables are:
[¢1’¢2'¢3'¢4’¢5'¢6]: [§031’|3' Xes YE 1 P51 |5]
The equations of the position for the ABCDA loop are:

The equations of the position for the ABEGA loop are:

The equations of the position for the ABEFHA loop are:
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f1 =001 SiN gy +15.C0S Py — 3.6 iN 31 =0

fo = 150951 COS @y +I3.5iN 31 + 15693 €OS o3 =0

f3 = =150 5IN @1 +I5,C08 031 — (I3 +1,).493: SiN 31 — X =0 (6.6)
f4 =15.0951 €OS @y +I3'5iN 31 + (I3 +1,).0931 COS 031 + Y =0

f5 = 150991 SIN @y + 15 COS 3y — (I3 +1,).0931 SIN @3 + 5 COS @5y — Isgps; SiN 5y =0

fo =15.0051 COS @ + |3 singy + (I3 +1,).¢3 COS @3y + |5 sin gg; + 1557 COS @5y =0

— 1, sin @y cospy; 0 0 0 0 [@s| [ lysing, |
I3 COS gy sinpy; 0 O 0 0 I —1, cos @y,
—(3+1,)sinpg; cosgpy; -1 0 0 0 Xe | | lasingy | (6.7)
(I,+1,)c0spy, singy O L 0 0 lye | |=1,co80, 72
—(3+1,)singpy cospy 0 0 —lssings cosgg ?51 I sin @y
| (I3 +1)cospy  singg; 0 0 Igcosgs  singg || |5 | | 1,080, |
f1 = 159031 €08 0y + 1508 031 —3.0031 51N P31 —I5.0031 5IN @3y — 15,3, 5N gy —
I35, C0S @y =0
fy =—1,.093, Sin @y + 1351 g1 + 13,0931 COS oy + [3.001 €OS 3, + .53, COS gy —

—l3.93 sin g =0

f,=—1,.92 I — 5.5 SiN @y — (I3 +1,).02, COS oy —
3 = 12021 COS @yy +13.COS @31 — l3.03, SIN @31 — (I3 + 1, ).¢3; COS 31
= (I3 +14)-93 5in @31 — 5.3 SIN 3 — Xe =0

f. =, ¢221 sin gy, + i. .Sin gy + |.3 P31 COS g1 — (I3 + |4)-¢§1 sin g, —
= (I3 +14)-93 COS @31 — 3.9 COS gy — Y =0
f =-l, (021 COS @, + | .COS @31 — |3 g1 SN @31 — (I3 + |4)-¢§1 COS @31 —

— (I3 +14).95, SN @31 — 5.0 5iN @3y +15.C0S 5y — 5.9, SIN gy — |05 SIN 5y —
— I35, SiN @5y — |52 €OS gy =0

fo =152 SN @y +13.5IN gy + I5.0991 COS gy — (I +1,).69%; SiN @3y —

= (I3 +14).G331 COS gy — l5.903 COS gy + 5.5 gy + I5.095; €OS 5, + 56951 €OS o5, +

. . 2 -
+ 50951 COS @51 — l5.005, Sin 5 =0

(6.8)

122



15 cos ¢y,
—l;singy
(I3 +14) cos gz
(I3 +1,)sin @,
(I3 +14) cos oy
| (I3 +1,)singgy |

)
P31+

The results from the kinematic analysis

—l3sin @y cosgpy O

I3 cos @5, singpg; 0

—(I3+14)sinpy cospy -1
(I3 +14)cos gy singy

—(I3+1,)singy cospsy 0

| (I3 +1,)cos 5 singy 0O

0 0 0 $a | [ lpsingy |
0 0 0 i —1, cos ¢y
0 0 0 X I,sing .
| “E _ 2 21 ¢221 +
1 0 0 Ye —1, cos gy,
0 —lgsings cosgs || @5 I, sin gy, (6.9)
0 Igcosps; singg || 15 | |—1,cosp, |
[ 2lysings, | [0 ] 0 ]
— 21, cos @y 0 0
[,sing , 0 . 0 ,
3 o @3y + Ps; + -(/7521
— 15 cos @y, 0 0
I sin ¢y, 2l5 sin g, I5 cos g5,
| —l;cos s | | -2l cos g | | 1 sin g, |

The given solution was carried out by using the SolidWorks and the results of

the kinematic analysis are shown in Figs. 6.96, 6.97 and the animation for the first

four positions is shown in Fig. 6.98.

24 — 15 — 67 ~——
18 11 + 65
12 7T 63
6 4 61
1 0 -+ 59 + + + + + + T
000 069 138 207 276 345 414 483 552 621 690
Time (sec)

Fig. 6.96 Course of the position (blue), velocity (red) and acceleration (green) for
the body 3 of the mechanism

46 — 17 — 81

344+ 131 80

231+ 94 79
124 44 78
0 oL 77

T +
276 345
Time (sec)

T + T +
414 483 552 621 690

Fig. 6.97 Course of the position (blue), velocity (red) and acceleration (green) for
the body 5 of the mechanism

123



Fig. 6.98 Animation of the four positions of the mechanism

The analysis of the planar mechanism is based on selection of the linear

tetrahedral element with four nodes (see chapter 2.2).

The main objective of the dynamic analysis is connected with specification of the
loading for the individual items and determination of the courses relating to mutual
reactions, referring to individual Kkinematic connections [8], [10-14], [16].
The analysis was based on utilisation of the nonlinear model. Relating to the

analysis, the other important values were utilised:

- modulus of elasticity (Young’s modulus): E = 210 GPa,
« Poisson’s ratio: u=0.3,

. density of material: p = 7850 kg m™®.

Fig. 6.99 shows the degraded degrees of freedom of the given mechanism.
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Fig. 6.99 Degraded degrees of freedom of the mechanism

The network of finite elements of the planar mechanism can be seen in
Fig. 6.100.

Fig. 6.100 Finite element network
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The distribution of the stress for mechanism [17-18] can be seen in Fig. 6.101 and

distribution of the displacement for mechanism is shown in Fig. 6.102.

von Mises (N/m#2)
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6,999 +02

Fig. 6.101 Distribution of the stresses (Pa) for the mechanism
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Fig. 6.102 Distribution of the displacement (mm) for the mechanism
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7 Procedures for Kinematic and Dynamic Analysis of
Planar Mechanisms by Means of SolidWorks Software

The following chapter includes the introduction and description of the
procedures which are closely connected with kinematic and dynamic analysis of a

six-item body system (Fig.7.1), using the SolidWorks software [36].

Input parameters:

AB=1,=0045 m, BC=1,=0095 m CD=L,=0.09 m,
CE=L;=006 m DA=L,=01 m EF=Y;=0048 m,

0=0,=20 °, ;=60 °, 0, =270 °, g =343 °, ;=36 deg.s™ =konst -

yA

Obr. 7.1 Kinematic scheme of mechanism
The variables are:

(41,0285, ]= 03,00, 05, %e | (7.1)
The equations of the position for the ABCDA loop are:

fy:L,cos@, +Lgcosg; +L,co0s¢, — Ly =0

The equations of the position for the ABCEFA loop are:
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f3 1L, co0s@, + L3 C0S@; + Lscosps —Xg =0
fy Ly sing, + Lgsing; + Lssings —yg =0

(7.3)

If the equations of the positions (7.2) and (7.3) are differentiated on the basis of

¢,(i=1234) variables, the system of velocity equations (7.4) is obtained and after

further differentiation, the system of acceleration equations (7.5) can be obtained.

fy 1 —Logo, SiNg, — LygpySing; — Lygyy Sing, =0

f3 1 —Logo, SN, — Lagpa Sing; — Lsgos Sings — X =0

f, Ly COS @ + Lagr3 COS @05 + Legps COS o5 =0
(7.4)

v .92 . .92 .. .2
fy 1=Log) cOs @ — L33 sin gz — L33 C0S 3 —Ladpy Sin gy —Ly@j COS @y =0

v .o . . .2 . .. .2 .

fa 1—Logs singy +L3@s €OS o3 —Lap3 Sin @z + Ly@y COS o4 —La@f SiNgy =0

o .2 . .2 L ) y
f31=Log5 C0S @y — L33 Sin 3 —Lgps €0S @3 — L5 s Sin g5 — Lsps €0s g5 — Xg =0

v L . . L2 . .. L .
fa 1 =Lo@5 singy + L3z COS 3 — L33 Sin @3 + L@ €0S o5 — Lsps sings =0

(7.5)

We rewrite the system of equations (7.4) into the matrix form (7.6) and we rewrite

the system of equations (7.5) into the matrix form (7.7).

7.1 Creation of a computational model in the SolidWorks program

—Lysing, —L,sing, 0 0| | Lo, sin g,
Lycosp, L, cosg, 0 0| @5 |- Ly, c0s0,
—Lysing, 0 —Lssing, -1 o Lo, sin ¢,
L, cos g, 0 Lscosg;  Of [X¢| |- Lyp,C080,
—Lgsingg —Lysing, 0 O |@3] |Lpg3 cos @y + g3 cos @3 +Lagy COS oy
Lzcosps  LyaCOSQy 0 0| |Ga| _|Logp3 singy +Lgg3 sings + Lagpf sing,
—Lzsings 0 ~Lssings —1 |fs| |Lpp3 cos g, +Lgp3 COs o3 + L COS 5
L3 cos o3 0 Lscosgs 0| [Re| |Lpg5 sing, +Lgp3 sings +Lsgé sinps

(7.6)

(7.7)

Utilising the drawing technical documentation of individual bodies from

Fig.7.3 to Fig. 7.15, the individual procedures or steps of kinematic and dynamic

analysis can result in the creation of the computational model (Fig.7.2).

Subsequently, the whole set of items or members can be used to create the

assembly of bodies with individual kinematic connections (Fig.7.15). All of the
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important input values, including boundary or critical conditions, material
constants, loading and meshing of individual bodies for a given group of elements
(Fig. 7.16) as well as the start of the kinematic and dynamic analysis (Fig. 7.17) are

predetermined. The results can be obtained in graphic or numerical form.
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015 Y 0ls |—— 002 — o] f— 00,0005
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0012

Fig. 7.3 Frame, designated as 1, and its dimensional parameters in [m]
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Fig. 7.9 Item or member, designated as 4, and its dimensional parameters in [m]
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Fig. 7.11 Item or member, designated as 5, and its dimensional parameters in [m]
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Fig. 7.12 Model of the body, designated as 5 in SolidWorks software
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The results from the kinematic analysis:

Animation of the eight positions of the mechanism can be seen in Fig. 7.18. The
course of angular velocities and angular acceleration of the individual bodies of the
mechanism is shown in (Fig. 7.19) and (Fig. 7.20). The course of speed and
acceleration of individual bodies of the mechanism is shown in (Fig. 7.21) and
(Fig. 7.22). On (Fig. 7.23) to (Fig. 7.27) are the results of the dynamic analysis.

A0 A1

N - -
A0 . ~1—1
e s

Fig. 7.18 Animation of the eight positions of the mechanism
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Fig. 7.20 Angular acceleration of 2, 3, 4, 5, 6 bodies in dependence on the time

137



5,0E-02

4,5E-02 X
4,0E-02
3,5E-02 I\
2 3,0E-02 /AN
é 2 5E-02 !z%v %f \ \(
> 2,0E-02 N 7 \\\ a
LOE-02 o o — .
5,0E-03 WVA
0,0E+00 1 1 1 ' \ 1 1 1 1
00 10 20 30 40 50 60 70 80 90 100
t(s)
—e—body 4-1 —=&—body 3-1 body 2-1
body 6-1 —*—body 5-1

Fig. 7.21 Velocity or speed of 2, 3, 4, 5, 6 bodies in dependence on the time

6,0E-02
5,0E-02
4,0E-02 /\
3,0E-02 Va\
2,0E-02
(00— — - ——

0,0E+00 ¥ ! ! ! ! ‘ !
00 1,0 20 30 40 50 60 70 80 90 100

t(s)
—e—body 4-1 —=—Dbody 3-1 body 2-1
body 6-1 —¥—body 5-1

a (m/s**2)

Fig. 7.22 Acceleration of bodies 2, 3, 4, 5, 6 — in dependence on the time
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The results from the dynamic analysis:

Fig. 7.23 Distribution of the stresses [Pa]

Fig. 7.24 Proportional deformation

Fig. 7.25 Displacement course in [mm]
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