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 Introduction 

The monograph "Analysis and synthesis of planar mechanisms" deals with the 

numerical analysis and synthesis of planar mechanisms.  

The solution of real problems from practice is often based on the solution of 

complex systems relating to differential, integral as well as algebraic equations. In 

the most cases, it is not possible to obtain analytical solutions and therefore, the 

designers use numerical procedures, using modern computer technology. 

The modern computational methods depend on the creation or formation of a 

virtual model along with the subsequent simulation of the specified system and by 

this way, it is important to point that the formation and simulation belong to 

inseparable part of work of current designer in order to solve the whole complex of 

problems, the solution of which can bring significant economic benefits. 

In relation to the requirements of the practice, the main work of designer is to 

specify and optimise the parameters of the designed device with respect to its 

weight, shape, geometry or other dynamic properties. The main goal of design 

work is to save material and to find the best solution from the aspect of the material 

usage as well as the appropriate shape of the structure. 

Nowadays, the increased requirements for material consumption, operating 

lifetime, durability, reliability of products and machine devices require new 

progressive approaches to solve the tasks of technical practice. Using the suitable 

computational or numerical programs, the precise, fast and efficient study can be 

carried out, while the given study more or less affects the static and dynamic 

characteristics of the machine or device. 

The main aim of the monograph is to acquaint the reader with the fundamental 

terms of theory for understanding the process of solution of the given tasks and to 

show the issues, approaches, procedures for formulation of the theory, modeling 

and simulation of determined solid body systems which can be used as examples of 

devices or machines from practice. 
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The content of the monograph is divided into seven chapters. The first chapter 

is devoted to the computational modeling, which allows real systems to be 

investigated using mathematical relations or equations and there is also the brief 

description of the appropriate approximation methods of continuum mechanics as 

well as the most commonly used numerical methods. The second chapter is 

devoted to the introduction to the finite element method (FEM). In the given 

chapter, the basic principles of the finite element method are elaborated, while the 

main attention is paid to the four-node tetrahedral space element which was used 

for modeling of planar solid body systems. 

The third chapter is closely connected with kinematic analysis of planar solid 

systems, the basic concepts and theory and terms which are necessary for creation 

or formation of planar solid body systems. The fourth chapter is based on to the 

expression of kinematic quantities at rotary motion, general planar motion and 

simultaneous motion of solid body in the matrix form. The fifth chapter deals with 

the solution of kinematic variables or parameters (quantities), using vector method. 

Numerical solution of kinematic (parameters) quantities was applied to various 

solid body systems. The sixth chapter includes kinematic and dynamic analysis, 

and stress distribution in planar solid body systems, using SolidWorks software. 

Numerical application was carried out for several examples. The last, the seventh 

chapter is devoted to the description of the individual procedures which are 

necessary for the performance of the kinematic and dynamic analysis of six-item 

(member) or body system, using SolidWorks software. 

I believe that the monograph will be the great contributing aid for academic 

specialists as well as for designers, investigators and other experts from practice. 

At the end, I consider it a nice duty to express many thanks to the reviewers for 

valuable comments, recommendations and ideas which have led to the 

enhancement of the given monograph. 

Púchov, October 2023                                                                 Authors
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1    Computational Modeling of Planar Solid Body Systems 

Static, kinematic and dynamic analysis of planar solid body systems is closely 

connected with a virtual (mathematical) model of the investigated system, which 

has to be created or formed as the first in the modeling process. The virtual 

(mathematical) model describes all the essential properties of the real system with 

the boundary or critical conditions, such as dimensions, weights, arrangement of 

individual bodies, kind of interconnection, stiffness or rigidity of individual bodies, 

way of loading by external forces as well as degrees of freedom. 

Computational modeling is based on the similarities between the real and 

abstract systems and it allow us to investigate the real systems by help of abstract 

systems, using mathematical relations or equations. The given modeling is suitable 

for the study of even very complex physical phenomena in extensive systems if we 

are able to describe the phenomenon as well as the system in a sufficient 

mathematical way. 

Complex physical dynamic phenomena are mostly expressed by simple or 

partial differential equations or their systems (including additional conditions) and 

they can be commonly solved in a numerical way, using computational technology. 

The fundamental principles of the numerical methods are based on the division or 

transformation (discretization) of dependent variables of physical quantities in the 

computational domain into the individual, discrete values in the created nodal 

points of the geometric model with the reference to the issue or task. 

Numerical solution of the linear and nonlinear differential equations, which 

describe particular temperature, velocity, stress, strain filed or displacement fields, 

is a set of numbers due to which we can get the resultant fields of individual 

dependent variable physical quantities ( ,...,,,, uwT  .). Numerical methods are 

used to solve the dependent variable physical quantities in the finite number of 

nodes of the discretization mesh in the computational domain. 

The common feature of all numerical methods is connected with the effort to 

get the solution of the differential equation to the level of algebraic equations and 
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to solve these resulting algebraic equations by common matrix calculation. 

Numerical methods make it possible to obtain a solution of a physical quantity in a 

specific number of discrete areas (nodes) for the selected differential mesh (finite 

element mesh) in the whole area or on the surface part of the created geometric 

model. 

The basic numerical method for solving differential equations is the finite 

element method (FEM). The solution of differential equations is associated with 

the search for a minimum of the strictly defined functions which are also called 

shape functions. The principle of FEM is that we substitute corresponding quantity 

(e.g.: temperature, speed or velocity, etc.) by a discrete model, which is determined 

by a set of corresponding continuous functions (polynomials) for a finite number of 

sub-regions (elements). 

The elements of the observed area are obtained by dividing the given area into 

a set of sub-regions of the simple form (triangles, quadrilaterals, tetrahedrons, 

pyramids). The functions, which are searched, are approximated within the 

boundaries of each sub-region by the polynomials and by this way, the coefficients 

of the approximating polynomials are expressed through the values of the searched 

functions in the finite number of nodal points of the elements. The sub-region with 

selected determined nodes is called an element. The mutual interaction between 

finite elements takes place exactly through the nodal points of the elements. The 

solution of the given task or issue is based on the calculation of the specific 

numerical values of the searched quantity in nodal points of the model from the 

system of linear algebraic equations. 

Using the computer, the solution of a mathematical model replaces an 

experiment of a real system and therefore, it is called mathematical 

experimentation or simulation. In this case, the investigated problem is analysed 

deterministically (the outputs are introduced with the precision of experimental 

errors), using the numerical methods, while the model solution is implemented 

through a suitable program system. The computational modeling scheme is shown 

in Fig. 1.1. 
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Fig. 1.1 Computational modeling scheme 

 

The principles of computational modeling with subsequent simulation and load 

analysis contain a large amount of information from mathematics [2, 6, 7, 9, 11, 

42], mechanics [10-15, 17, 19, 22- 50], finite element method (FEM) [1, 3, 4, 5, 8, 

16, 18, 20, 51], as well as from the theory of construction and design of machine 

nodes and at last but not least, from the field of material engineering. This 

multidisciplinary conception naturally leads to teamwork or to complex 

comprehensive degree of knowledge in the specific engineering fields. 

 1.1   Numerical Methods in Continuum Mechanics 

The exact solution of the state equations of elasticity (resilience) and strength 

is very complicated and therefore, the approximate numerical methods have been 

developed. The approach to the solving of a mathematical model of a task or issue 

can be based on two basic methods: 

a) the approximate solution of state equations, 

b) the application of extremalisation principles (energy approaches). 

In relation to the first mentioned method, it is important to point out that we 

solve the state equations, which are mostly in the form of differential equations and 
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the given solution is based on the finite difference method in various modifications. 

Using the known differential relations, we can obtain an approximate solution for 

discrete points to which the investigated object was divided. 

In the second mentioned method, we use the basic principles of mechanics 

related to the energy balance. For example, we compare the potential energy of 

internal and external forces by minimizing the difference. The given comparison is 

performed as a variation task (issue) or through the principle of virtual work or 

performance. A more detailed description of the introduced methods as well as 

basic principles can be seen in [3], [7-9] and many other literature sources. 

Based on the principle of virtual work, the best-known numerical methods 

include also the Galerkin-Bubnov method in its deformation or force form. 

The methods, which are based on conventional variation principles, include the 

Rayleigh-Ritz method in two variants – deformation and force. The finite element 

method is also based on the given deformation variant. The main idea of all 

methods relates to the estimation – the approximation of the solution by help of 

simple mathematical functions, while the following extremalisation condition must 

be met: 

zyxjidSupdVuX i

V S

iiiijij ,,,    .min    )(     ,
 (1.1) 

or in matrix form: 

  .min    )(    dSdV
V S

TTT
upuXεσ  ,

 (1.2) 

where ij are the stress tensor components, ij are the strain tensor components, pi 

are the components of intensity vector for the external force, and ui are the 

displacement vector components. Equation (1.1) is supplemented by other 

members or items, including the fulfilment of boundary conditions, compatibility 

between elements, or any other conditions. 

The best known and most popular numerical methods of engineering mechanics 

are: 
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• Finite-difference method (in the investigated area, we define points – nodes, 

which are fictitiously connected and thus we are able to create a mesh, which 

has to be dense enough to achieve the sufficient accuracy of the discrete values 

in nodes for the investigated function and nowadays, the given method is used 

in a minimum way); 

• Transfer Matrix Method (it is based on the balancing of state quantities 

between predefined solid body sections, while the most notable application of 

this method was introduced for static and spectral analysis of simply supported 

beams with added discrete values and springs – the application of this method 

is more efficient than application of FEM, but it is limited by complexity of 

task or issue); 

• Finite Element Method - FEM (it is based on Rayleigh-Ritz deformation 

method where the element mesh is defined for the whole body and system 

equations are created by special globalisation procedure, which includes 

creation of system parameters of individual elements, such as matrix of 

stiffness or rigidity, mass or weight and many others – it is currently the most 

widely used method with great commercial success and a wide range of 

application); 

• Boundary element method (the mesh of the elements is created only at the 

boundary of the investigated object, while the investigated quantities inside the 

body are calculated by help of the known exact solution of the problem, and the 

advantage as well as efficiency of the method is based on the reduction of the 

task/issue extent by one grade – although there are several software packages 

resulting from principles of this method, it has not been as popular as FEM in 

engineering practice). 
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2    Introduction to the Finite Element Method (FEM)  

Nowadays, the Finite Element Method (FEM) is fully algorithmised and used 

in a large number of commercial computational programs in order to solve very 

complicated tasks or issues. The great advantage of this method is that the created 

model can correspond accurately to the real geometry of the object. Actually, the 

given mentioned fact is not the general rule for methods, which are based on 

conventional approaches of the theory of elasticity (resilience) and strength. 

The authors of [1], [3], [4], [8], [16], [51] as well as many others have the greatest 

merit in dissemination of the important facts, principles and information about the 

finite element method (FEM). 

Currently, the FEM stands for a specialised scientific field and it includes the 

following parts: 

1) the theoretical part, where different FEM formulations and different relations 

are for different types of elements are derived or differentiated, 

2) the mathematical part, which includes such problems as the existence of the 

solution and its convergence, error estimation of the solution and application 

appropriate or suitable numerical algorithms, 

3) the computer part, where the special computer programs or software are created 

and implemented, including Fortran, C ++, MATLAB and so on, 

4) the application part, where the user operates with FEM programs to solve the 

specific problems. 

The main principle of the method can be characterised very briefly: the planar, face 

(flat) or spatial construction is divided into elements of any shape, while the given 

elements are commonly called the finite elements (Fig. 2.1). 
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Fig. 2.1 Division of the construction into the finite elements 

Dividing lines and areas create dividing points or in other words “nodes”. The 

values of displacements or forces at nodal points are considered as unknown 

quantities and they are designated as the nodal parameters. The deformations and 

stresses within the elements are expressed by using the nodal parameters in the 

form of polynomials or interpolation functions. Finally, the variational principle is 

applied to the continuum as a whole, and by this way, it is possible to specify the 

equations for the searched quantities. After the solution of the given equations, the 

deformation and stress of the whole construction (structure) is determined. 

2.1   Linear Analysis of Static Tasks 

There are the basic ideas of the finite element method for static loading of the 

construction (structure). The deformation variant of FEM is going to be applied and 

therefore the displacements for individual points or nodes of the discretised system 

will be analysed as the first. This system is divided into a finite number of elements 

so that the changes in cross-sections, material properties or forces can be taken into 

account.  

For more complicated tasks (issues), there is possible to use the energy 

approaches, especially conventional variational approaches, including the 
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Lagrangian’s minimum energy potential approach and the Castigliano’s principle 

for minimum energy of system. We consider the deformation approach and 

therefore, it is needed to explain Rayleigh-Ritz strain or deformation method 

briefly. By applying the matrix notation of equation (1.2), let us define the problem 

relating to the minimum functional of the total potential energy 

  .min
2

1
  

V S

T dSdV puεσ
T ,

 (2.1) 

where  is the stress vector,  is the deformation vector, p is the external load 

intensity vector and u represents the displacement vector. The first integral is the 

work of the internal forces and the second one represents the work of the external 

forces (volume forces are not taken into account). Let us take into account the 

validity of Hooke’s law in general: 

εDσ  ,
 

(2.2) 

where D is a matrix of material constants, and then (2.1) is in the form: 

   
V S

T dSdV .min
2

1
puεDε

T
 (2.3) 

One of the basic ideas of the finite element method (FEM) is based on the 

approximation of the function for u, v, w displacement by approximate shape 

functions, based on discrete values for displacements in the finite element nodes. 

The finite element stands for the part of the solid body and the given part can be 

defined by nodal points, own geometry, material characteristics and equations, 

which are valid in the mechanics for flexible bodies (but not for all, as it is 

evidenced by some studies or publications [6], [15-16]). The finite element model 

of the solid body is then created by the imaginary connection of all elements. In 

fact, this imaginary connection is carried out by creating of so-called global 

stiffness (rigidity) matrix of specific system and it represents the basic system 

parameter of the method and moreover, its creation is a mathematical expression of 

the process of discretization of the analysed body. 
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Using Cauchy’s equation, we can get a general relation between the  vector of 

relative strains or deformations and the u vector of discrete displacement values in 

the nodes of the element: 

uBε  ,
 

(2.4) 

where B is a matrix of differentiations of shape functions in accordance with 

Cauchy’s equations. After insertion of (2.4) to (2.3), we can get: 

   
V

v

T

S

TTT dSdV min    
2

1

2

1
fuuKupuuBDBu

T ,
 (2.5) 

where 

  
V

T dVBDBK ,
 (2.6) 

is the finite element stiffness (rigidity) matrix. It is different for each one element. 

The fv vector is a nodal force vector. By applying the necessary condition of the 

existence of the extreme in (2.5), we can obtain 

vv fuK0fuK
u





   alebo                         0


.
 

(2.7) 

Equation (2.7) represents the equilibrium of forces in nodes of the element. After 

the so-called globalization procedure (calculation of the stiffness contributions of 

all elements as well as creation of the overall stiffness matrix of the investigated 

system), the vector of the nodal forces will be the same as the vector of external 

forces introduced into the nodes and matrix K will already be the overall stiffness 

(rigidity) matrix of system in the global coordinate system. Then, the state equation 

for the problem can be: 

GLOBGLOBGLOB fuK  .
 (2.8) 

By solving of the uGLOB and its subsequent conversion to the u vectors of 

displacements for the individual elements, we can calculate the  vector – equation 

(2.4) for each finite element and using the Hooke's stress-strain law, we can get . 
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The principle of creation of the stiffness matrix of the element as well as the 

creation of the whole analysed system represents the first step relating to successful 

understanding and familiarising of the method. The finite element represents a 

fictitiously selected small part of the solved construction (structure), for which the 

selected conditions (describing the observed physical phenomenon) have to be 

valid. The each one element is characterised by material and geometric properties 

and it is important to point out that its physical interpretation is mainly based on 

mathematical means. 

The finite elements are divided according to their geometry (Fig. 2.2) into: 

• the one-dimensional (bars, beams), 

• the two-dimensional (plane stress or strain, triangular, quadrangular elements), 

• the three-dimensional (spatial stress and deformation, tetrahedron, brick 

elements). 

 

Fig. 2.2 Division of the finite elements [3] 

The finite element method makes it possible to detect the stress and state of 

deformation or strain under the any load at any point in the solid body of any shape 

and material. 

2.2    Modeling with Four-node Tetrahedral Space Elements 

Consider the four-node linear tetrahedral spatial element (Fig. 2.3). Element 

belongs among the basic types of volume finite elements [1], [3], [51]. 



 17 

In the element, we are able to define 12 strain or deformation degrees of 

freedom – after the three displacements for each node, the vector of unknown nodal 

displacements can be: 

 Twvuwvuwvuwvu 444333222111u .
 (2.9) 

 

Fig. 2.3 Tetrahedron spatial element 

In the order to differentiate the stiffness matrix of the element, we consider the 

three linear functions displacements relating to u (x,y,z), v (x,y,z) and  w (x,y,z): 
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We can determine the unknown coefficients of the  vector from the boundary 

conditions for the nodal values of displacements and it can be seen in the matrix 

form in (2.12). 
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(2.12) 

then, the  vector will be: 

uAα  1 .
 

(2.13) 

If the u (x,y,z) , v (x,y,z) and w (x,y,z) functions of area for displacements are: 

uAa 















1

),,(

),,(

),,(

zyxw

zyxv

zyxu

,
 (2.14) 

we can express Cauchy’s vector: 
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(2.15) 

If we consider the spatial stress, the matrix for material constants is:  
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(2.16) 

where E is the known tensile modulus and   is Poisson’s ratio. By applying the 

general relation for the calculation of the stiffness (rigidity) matrix, we can get: 

BDBBDBK  
T

V

T VdV ,
 (2.17) 

where V is the tetrahedron volume, which can be calculated: 
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where x1, x2, … y4 are the coordinates for the nodes of the element. The stress 

calculation is based on Hooke's law and it is implemented as follows: 
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 (2.19) 

where 



 20 

 is the stress vector, 

D is a matrix of material constants, 

 is the strain vector, 

B is a matrix of differentiations of shape functions according to Cauchy’s 

equations 

U is the displacement vector. 

In this case, the stresses are constant throughout the whole element. This 

results in discontinuity of the calculated stresses throughout the whole analysed 

body. 
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3    Kinematic Analysis of Planar Solid Body Systems 

The purpose of the kinematic solution of the solid body systems is to 

determine the movement (motion) of the individual members or items and their 

significant points in dependence on the movement (motion) of the members or 

items which drive the mechanism. To determine movement (motion), it is 

necessary to determine the position, velocity or speed and acceleration (or angular 

position, angular velocity or speed, and angular acceleration) of investigated items 

(members) and points in dependence on the position of driving items (members) or 

in dependence on the time.  

3.1    Basic Concepts and Fundamental Terms 

A solid body system is a kind of assembly of at least three bodies (members), 

including a basic frame, which is used to connect the given items (members) 

together by the kinematic constraints. Mechanism is a movable system of items or 

members (bodies), which move mutually, while the kinematic constrains stand for 

one or two degrees of freedom of movement. Mechanisms, which are used for the 

transmission of motion (or transmission of forces, moments), are called 

transmission mechanisms and mechanisms, which are predominantly used to drive 

the points and bodies on certain paths or trajectories are called driving mechanisms. 

The two items (members) that are connected or joined together and can move 

relative to each other can be understood as a kinematic pair. An overview of some 

kinematic pairs of planar mechanisms is given in Tab. 3.1 and their design can be 

various [9]. 
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Tab. 3.1 Planar kinematic pairs 

Description 

of 

Kinematic Pair 

Degrees 

of 

Freedom 

Type 

or 

Class 

 

Symbol 

Scheme 

and  

Coordinate 

 

Rotary 

 

1 

 

2 

 

r 

 

 
 

 

Sliding 

 

 

1 

 

2 

 

p 

 

s

 

 

Rolling 

 

1 

 

2 

 

v 

s

s  
 

General 

 

2 

 

1 

 

o 

 

 
 

 

The items or members which drive the mechanism are called driving items 

(members) and the driven items (members) are those, the motion (movement) of 

which depends on the driving item or member.  Connected by kinematic pairs, 

several bodies (members) form a kinematic chain. The kinematic chain can be 

opened or closed, and each can be either simple or complex. 

  The relationship between the output value (for example, the angle or path of 

the output member) and the input value is called the transmission ratio. 

3.2    Classification of Solid Body Systems (Mechanisms) 

Mechanisms can be classified on the basis of the various aspects: 

• on the basis of the movement (motion) of the bodies (items or members) – 

the plane, spherical and spatial mechanisms, 

• on the basis of number of items (members) – the simple mechanisms (3, 4 

items or members) and complex mechanisms (6 or more items or members), 

• on the basis of transmission with permanent transmission and variable 

transmission, 

• on the basis of the applied elements – articulated, cam, geared, etc., 
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• on the basis of number of degrees of freedom – the mechanisms with one or 

more degrees of freedom, 

• on the basis of any other criteria. 

3.3    Formation of Planar Mechanisms 

The theory of creation or formation of mechanisms deals with general methods 

of their structural analysis and synthesis. Mechanisms are planar if all items 

(members) move in planes parallel to each other. In Fig. 3.1 a, b, c, there are 

kinematic diagrams of the items (members) for binary (the 2
nd

), ternary (the 3
rd

) 

and quaternary (the 4
th

) degree with rotational kinematic pairs. In Fig. 3.1 d, e, 

there are binary items (members) with one and two displacement pairs. The 

kinematic chain consists of a set of items (members) which are connected by 

kinematic pairs. The kinematic chain is called simple if all the members of this 

chain are in binary or the 2
nd

 degree (Fig. 3.2 a, b). The kinematic chain is called 

complex if it contains at least one item (member) of ternary or the 3
rd

 or even 

higher degree (Fig. 3.2 c, d) [14]. 

 
Fig. 3.1 Binary members 
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Fig. 3.2 Kinematic chain: simple (a, b) and complex (c, d) 

 

 
Fig. 3.3 Simple mechanism (a) and complex mechanism (b) 

If in the kinematic scheme of a chain several of its items (members) form a 

closed pattern image (polygon), we can say that the chain forms a loop. Actually, it 

is the closed cinematic chain (Fig. 3.2 b, d). If the kinematic chain is opened, there 

is not any loop (Fig. 3.2 a, c). A combined kinematic chain represents the condition 

where some members are in the loops and some items (members) are not in the 

loops. Mechanisms arise from closed kinematic chains if anyone of items 

(members) becomes a frame. 

The simple kinematic chains result in simple mechanisms (Fig. 3.3a) and the 

complex chains stand for the arising of complex mechanisms (Fig. 3.3b). The 

introduced method for formation of the mechanisms is called kinematic chain 
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method. In the systematic creation of mechanisms by this method, the large 

number of them can be assembled, because it is possible to select different chain 

items (members) to be the frame. Moreover, it is possible to replace the rotating 

pairs by any other parts or to change the driving items (members) as well as 

proportions of items (members) in relation to the mechanism. The mechanisms can 

be also formed or created by the method for grouping of systems (objects). When 

connected with free kinematic pairs to a frame, the group of systems is a kinematic 

chain which gives a fixed, static, specific system. Various groups of systems are 

shown in Fig. 3.4. 

 

Fig. 3.4 Different groups of systems 

The connected or disconnected with the body systems (mechanism), the group 

of systems does not change the number of degrees of freedom (movability). The 

given statement represents the prism of the method for grouping of systems or 

grouping of objects.  The gradual connection of systems or objects with the driving 

items (members) and with the frame and subsequently with the mechanisms 

resulting from the previous steps leads to the creation or formation of variety of 

mechanisms. The other possible steps are shown in the following statements: 
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- if the binary member with the pairs of the second type or class is connected 

with the mechanism, the movability of the given mechanism will be decreased 

by one degree of freedom and if the given item (member) is disconnected, the 

movability will be increased by one degree of freedom, 

- if the binary item (member) with the pairs of the second type or class is 

replaced by common pair, which have connected the items (members) in 

mechanism, the movability of the mechanism will not be changed.  

The mechanism, which is shown in 3.5 b, can be formed or created if the binary 

group (designated as 3, 4) is connected with the crank and frame (designated as 2 

and 1, respectively) and subsequently, the other binary group (designated as 5, 6) is 

connected with mechanism, which was created or formed in the first or previous 

one step. The resulting mechanism has 1° of degrees of freedom because the crank 

(designated as 2) has also 1° of degrees of freedom, and the further and 

subsequently connected objects or groups of objects are not able to change the 

given movability. 

 

Fig. 3.5 Formation or creation of group of objects 
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Basic four-item mechanisms or mechanisms with four members: 

 
 

Crank mechanism Four-item articulated mechanism 

The further possible variants of four-item mechanisms  

 

Basic three-item mechanisms or mechanisms with three members:  

The cam mechanisms are the most common representatives of three-item 

mechanisms 

 

Cam mechanism 
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Three-item mechanisms with one degree of freedom are needed to have one 

common kinematic pair. 

The further possible variants of three-item mechanisms 

  

 

Multi-item mechanisms or mechanisms with more members: 

Multi-item mechanisms are made up of the basic four-item and three-item 

mechanisms by connecting the groups of systems or objects.  
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Mechanisms with more degrees of freedom: 

 

3.4    Degree of Freedom of Body System 

 The number of degrees of freedom of the planar mechanism is calculated 

according to the equation [9, 10, 14]. 

n = 3 ( i – 1 ) – 2d2 –d1, (3.1) 

where 

n   - the number of degrees of freedom, 

3   - the solid body in plane has 3° of freedom, 

i    - the number of items (members) of mechanism along with the frame, 

-1  - the subtraction of the frame, 

d2  - the number of pairs of the second type or class (the total number of rotation, 

displacement and rolling pairs),   

d1  - the number of pairs of the first type or class (common pairs). 

 An overview of planar kinematic pairs is in Tab. 1.3. The construction 

design of these pairs can be different. In the literature [9, 14], there is the equation 

(3.2), which is equivalent to equation (3.1). 

n = 3(i-1) –2(r + p + v) – o 

 

(3.2) 
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3.5    Formation of Kinematic equations   

The elements of any set of variables are called generalized coordinates but it is 

also important to point out that the given set of variables strictly determines the 

position and orientation of all the solid bodies of the mechanism. Generalized q 

coordinates can be independent or dependent. They are changed on the dependence 

of time and they are going to be written to the column vector: 

q = (q1   q2  ... qn )
T
 ,

  

where n represents their overall number. 

(3.3) 

 

The vector equation of its position stands for the basic equation of the 

mathematical model of the mechanism and it describes its kinematic properties [1]. 

0),( tq
 (3.4) 

After the breaking down of the given equation and specification of its scalar 

components, we can get a system of nonlinear equations. The equations can be 

divided into two groups. 

1) The equations, which describe the system of solid bodies regardless of the 

input parameters of the driving item (member), are the basis for the solution of the 

dependent generalized coordinates. They are called kinematic equations of the 

position of a system of solid bodies. 

0),( tK q
 

(3.5) 

2) Equations that describe the values of input generalized independent 

coordinates are defined by the kinematic equations of the input variables. Their 

number is equal to the number of degrees of freedom of the 𝑛𝐷 mechanism. 

0),( tD q
 

(3.6) 

We rewrite (3.4) by help of (3.5) and (3.6) in the form: 



 31 

0
),(

),(
),( 










t

t
t

D

K

q

q
q




.
 (3.7) 

The number of dependent variables is equal to the number of equations (3.5) 

and it is designated as 𝑛𝐾. The total number of variables is: KD nnn  . 

If the connections between the bodies are holonomic (they do not change with 

time), the equation (3.7) has the form: 
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q
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.
 (3.8) 

The ways of its formation are different. For planar mechanisms, the vector 

loop method is mostly used. In computational programs for systems of bodies 

(DADS), there are used the elements to create a model of the mechanism, while the 

given elements are combined to obtain the specific resulting mechanism. The 

equations of motion of the mechanism are created by "combination" of the 

equations for the individual members of the mechanism.  The examples of the 

elements are: connection of a point of body with a frame, connection of points of 

two bodies, rotary connection of two bodies, displacement connection of two 

bodies, connection of bodies by means of a rod with articulated end or with two 

displacement ends and the combination of joint with displacement end, wheels – 

rolling cams, absolute driving systems, relative driving systems. For the solution of 

the equation (3.8), the Jacobian’s ),( tq  matrix is used: 
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Jacobian’s matrix can be also obtained indirectly by differentiation of equation of 

the position (3.4). 

tq ΦqqΦqΦ  ),), t(t(
dt

d
.
 (3.10) 

tΦ  is partial differentiation of the position equation with dependence of time. 

The equation of speed (velocity) is obtained by a simple modification:  

tq ΦqqΦ ), t( .
 (3.11) 

By solving the velocity equation, the velocities or speeds of natural coordinates 

can be obtained. The obtained results can be used to express the speed (velocity) of 

any point of the mechanism. 

The acceleration equation is obtained by the further differentiating of the 

(3.11)  

tqq ΦqΦqqΦqqΦ  
tqqt( 2)(), .

 (3.12) 

One of the simple ways to solve the equations (3.8) of the position of the 

mechanism is to use the Newton Raphson method. 

0))(() 1   iiiqi( qqqΦqΦ
 (3.13) 

Note:  

The numerical complications can occur when the equations of the position of a 

given task is being solved numerically. It is not enough to use only the Newton 

Raphson method to solve them, but it is necessary to identify and to eliminate 

excessing connections. There are often problems due to the fact that the position 

equations are not unambiguous. 
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4    Matrix expression of Kinematic Variables 
 

4.1    Matrix Expression of Kinematic Variables at Rotary Motion  

The axis of the rotation passes through the origin of the coordinate system (Fig.4.1) 

[11, 14]. 

 

 
Fig. 4.1 

The expression of the position vector for the L point is: 

Tρr  ,
 (4.1) 

where 

 Tyx,r   is the position vector for the L point in the basic space, 

 T ,ρ  is the position vector for the L point in the space of the body.  

The transformation matrix of the rotary motion is: 

.
sin

sin







 






cos

cos
T

 (4.2) 

The expression of the speed for L point is:  

,TωρTv  
 

(4.3) 

where 

  






 


0

0
,




ωv avv

T

yx .
 (4.4) 

The expression of the acceleration for L point is: 
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 ρωαTρTa
2  ,

 
(4.5) 

where 

 Tyx aa ,a is the expression of the acceleration in the basic space,   








 


0

0




α  is the matrix of the angular acceleration of the solid body.

 (4.6) 

4.2    Matrix Expression of Kinematic Variables at General Planar Motion  

For the space of the solid body, the coordinate system is determined as 

and for basic space, it is O, x, y (Fig. 4.2) [11, 14]. 

 

 
Fig. 4.2 

The expression of the position vector for the L point is: 

ΩrTρr  ,
 (4.7) 

where 

 Tyx,r  is the position vector for the L point in the basic space, 

 T ,ρ  is the position vector for the L point in the space of solid body, 

 Tyx 00 ,Ωr   is the position vector for reference   point in the basic space. 

 

The transformation matrix of the rotary motion is: 
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 (4.8) 

The expression of the speed (velocity) for the L point in general planar motion is: 

  vTωrρTv  
 

(4.9) 

The expression of the acceleration for the L point in general planar motion is: 

   aρωαTrρTa
2   .

 
(4.10) 

4.3    Matrix expression of Kinematic Variables at Simultaneous Motions  

The body designed as 2 moves within the basic space 1 as well as it moves in 

relation to body designated as 3 etc., up to its motion in relation to the body 

designated as n-1 body, while the body designated as n is the body which is 

investigated. The selection of the coordinate systems is  

nizyxO iiii .....,,2,1,,,,   (Fig. 4.3) [11, 14]. 

 
Fig. 4.3 

The path of the L point of the n body is expressed by a matrix equation:  

n1n1 rTr  ,
 (4.11) 

where 
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
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,1,13423121 ...... TTTTTT
 (4.12) 

rn or r1 represent the position vector of point of n body, which is in connection in 

the system or in the basic space of 1, 

T1n or Ti-1,i is transformation matrix of n:1motion or i:(i-1) motion.  

 

The speed (velocity) of any point of the n body during simultaneous motions of the 

individual bodies can be expressed by the equation:  

n1n1 rTv 
 

(4.13) 

or equation: 

n1n1n1 rvTv  .
 (4.14) 

Matrix of v1n speed for n:1 can be calculated by help of equations (4.15) or (4.16). 

1n1 TTv
1n

1n  (4.15) 
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Matrix of angular speed (velocity) is based on the equation: 

T

nnn 11 TT1


 
(4.17) 

or equation:  
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Vectors of angular speed (velocity) can be also expressed by the equation: 

....... ,1233122 nn

T

n

T

nn   TT1  (4.19) 

The acceleration of any point of the n body during simultaneous motions of bodies 

can be expressed by the equation: 

n1n1 rTa 
 

(4.20) 

or 

n

2

1n1n1n1 rvATa )(  ,
 

(4.21) 

where  
1n1n vA   is matrix of acceleration. 
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5    Vector Method  

 The vector method [10], [14] is a general method, which is suitable for 

kinematic investigation of planar and spatial mechanisms. A certain polygon can be 

assigned to each one simple mechanism can be assigned, while the sides of the 

given polygon are considered as the vectors which form a closed pattern (Fig. 5.1). 

For vectors, constraining the closure conditions, it can be written in the form (5.1):  

0l i 


n

i 1
 (5.1) 

 

 

Breaking down the closure equation (5.1) to the x, y axes, it is possible to get two 

scalar equations (5.2), which are solution for the position problem (positional 

analysis of the mechanism), 

 

 (5.2) 

where  

n – is the number of vectors forming a polygon, 

li – is a length of the items (members), 
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Fig. 5.1 

and 



 39 

i – is the angle between the positive direction of the x-axis and the positive 

direction of the corresponding vector. 

By differentiating equations (5.2), with respect to time, it is possible to get the 

equations of speed (velocity): 

 (5.3) 

If the lengths and angles of some members are constant, i.e.: they are not changed 

along with time, the corresponding differentiations are zero. By differentiating the 

equations (5.3), with respect to time, it is possible to get the acceleration equations 

in the form (5.4): 

 (5.4) 
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5.1    Kinematic Analysis for Four-Item Mechanism 

 Relating to the four-item planar mechanism (mechanism with four 

members), solve the field of positions, angular speeds (velocities) and angular 

accelerations of item (member) designated as 3 and item (member) designated as 4 

in dependence on the position of the driving item (member). Use the vector 

method. The numerical solution is carried out for the specified input values, if the 

specified angle of rotational displacement for the driving item (member), 

designated as 2, is: q2  = 252°. The kinematic scheme of the mechanism is 

shown in Fig. 5.2. 

 

Specified or given values are: 

DB =l2= 0.04 m, BC =l3= 0.05 m, BA = 0.05 m, CE =l4= 0.06 m, 

q2  =252°, rad6.05633  , rad96.04  , 1

21 .1  srad , 2

21 .1  srad . 

Solution: 

The mechanism consists of four bodies (items), including a frame. The number 

of degrees of freedom is calculated according to equation (3.1) or (3.2) and there is 

1 ° of freedom. The kinematics of the mechanism can be solved by using the vector 

loop in Fig. 5.3. The formation of the equations of position (5.5), the differentiation  
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of which, with respect to time for  2,1ii  variables, gives the equations for speeds 

(velocities) (5.6) and then the given equations are rewritten into a matrix form 

(5.7). If we differentiate equations (5.6) with respect to time once more, we can get 

equations for accelerations (5.8), which can be rewritten into the matrix form (5.9). 

The given solution was carried out by using the SolidWorks and the results of the 

kinematic analysis are shown in Figs. 5.4, 5.5, 5.6 and the animation is shown in 

Fig. 5.7. 

 

The variables are:  

For DBCEFD loop, the equations of the position are:  

 (5.5) 

Speeds (velocities) and after further differentiation, a set of equations for 

accelerations is: 

 (5.6) 

The system of equations for speeds (velocities) in the matrix form is: 

 
(5.7) 
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 (5.8) 

The system of equation for acceleration in the matrix form is: 

 
(5.9) 

The results from the kinematic analysis 

 

 

0cos.sin.cos.sin.cos.sin.

0sin.cos.sin.cos.sin.cos.

4444
2
443333

2
332

2
22

4444
2
443333

2
332

2
21













llllqqlqqlf

llllqqlqqlf
































 

4
2
443

2
332

2
2

4
2
443

2
332

2
2

4

3

4433

4433

sin.sin.cos.sin.

cos.cos.sin.cos.

coscos

sinsin




















llqqlqql

llqqlqql

ll

ll

-2

-1

0

1

10 70 130 190 250 310 370

 





. ..

.
33 4

4

2
[  ]°   

-1

Fig. 5.5 

0

80

160

240

320

400

10 70 130 190 250 310 370

0

80

160

240

320

400

10 70 130 190 250 310 370

 °






3

3

4

2



4[°]

Fig. 5.4 



 43 

 

 
Fig. 5.7 Animation of the four positions of the mechanism 

5.2    Kinematic Analysis for Six-Item Mechanism 

Relating to the six-item planar mechanism [31] (mechanism with six members), 

solve the field of positions, speeds (velocities) and accelerations of the driving item 

(member) in the dependence on the position. Use the vector method. The 

numerical solution is carried out for the specified input values if the specified angle 

of rotational displacement for the driving item (member), designated as 2, is: q2  

= 20°.  The kinematic scheme of the mechanism is shown in Fig. 5.8.   
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Specified or given values are:  

 

 
Fig. 5.8 

Solution: 

 The mechanism consists of the six moving bodies (items) and a frame. 

The number of degrees of freedom is calculated according to equation (3.1) or (3.2) 

and it has 1 ° of freedom. The kinematics of the mechanism can be solved by the 

help of the vector loop (Fig. 5.9). Formation of the equations of the position (5.10), 

(5.11) the differentiation of which for  variables gives the specific 

equations for the speeds (velocities) (5.12) and then the given equations are 

rewritten into a matrix form (5.13). 
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Fig. 5.9 

The variables are: 

  

 

The displacement equations for CBEC are: 

 (5.10) 

The displacement equations for the CADC loop are: 

 (5.11) 

 (5.12) 
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If the equations (5.12) are differentiated once more, we can get equations (5.14) for 

the accelerations and they can be rewritten into a matrix form (5.15). 

 (5.14) 

 (5.15) 

The results from the kinematic analysis: 

 The given solution is carried out by using the SolidWorks and the results 

of the kinematic analysis are shown in Figs. 5.10, 5.11, 5.12 and the animation of 

the first three positions is shown in Fig. 5.13. 
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Fig. 5.11 

 
Fig. 5.12 

 
Fig. 5.13 
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5.3    Kinematic Analysis for Seven-Item Mechanism 

 Relating to the seven-item planar mechanism [41] (mechanism with seven 

members), solve the field of positions, speeds (velocities) and in the dependence on 

the position of the driving item (member). Use the vector method. The numerical 

solution is carried out for the specified input values if the given specified angle of 

rotational displacement for the driving item (member), designated as 2, is: q2  = 

60°.  The kinematic scheme of the mechanism is shown in Fig. 5.14. 

Specified or given values are: 

 

mlAE 06.01  , mrr 03.042  , mlml 06.0,08.0 53  , 

mlml r 122.0,08.06  , 
 20,300,40,60 6532  q , 

konstsrad  1

21 .2 . 

 
 

Fig. 5.14. Planar mechanism – computational model. 

Solution: 

 The mechanism consists of the seven moving bodies (items) and a frame. 

The number of degrees of freedom is calculated according to equation (3.1) or (3.2) 

and it has 1 ° of freedom. The kinematics of the mechanism can be solved by the 

help of the vector loop (Fig. 5.15). Formation of the equations of the position 

(5.16), (5.17) the differentiation of which, for  variables, gives the 

specific equations for the speeds or velocities (5.18) and then the given equations 

 4,3,2,1ii
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are rewritten into a matrix form (5.19). If the equations (5.18) are differentiated 

once more, we can get equations (5.20) for the accelerations and they can be 

rewritten into a matrix form (5.21). 

 

Fig. 5.15 

The variables are: 

 

The equations of the position for the ABCDEA loop are:  

 

 
(5.16) 

The equations of the position for the ABCFEA loop are:  
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(5.19) 

 

 

 

 

(5.20) 

 
(5.21) 

The results from the kinematic analysis: 

The specific solution was carried out on the basis of SolidWorks. In Fig. 5.16, there 

is the course of the rotational displacement of the 3, 5, 6 items (members) and 

moreover, the displacement of the F point in dependence on the rotational 

displacement of the crank, designated as 2, is shown in Fig. 5.17. In addition, the 

course of the angular speeds (velocities) of mentioned items (members) and the 

speeds (velocities) for the F point is shown in Figs. 5.18 and 5.19. The first four 

positions of the mechanism can be seen in Fig. 5.20. 
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Fig. 5.16 

 

Fig. 5.17 

 

Fig. 5.18 
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Fig. 5.19 

 

Fig. 5.20 

5.3.1    Dynamic analysis of planar mechanism  

The main objective of the dynamic analysis is connected with specification of the 

loading for the individual items (members) and determination of the courses 
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12]. The analysis was based on utilisation of the nonlinear model. Relating to the 

analysis, the other important values were utilised: 

 modulus of elasticity (Young’s modulus): E = 210 GPa,  

 Poisson’s ratio: µ = 0.3, 

 density of material:  = 7850 kg m
–3

.   

Fig. 5.21 represents the course of the reaction in D point of the body, designated 

as 4 and Fig. 5.22 represents the course of the reaction in C point of the body, 

designated as 3. 

 

 
 

Fig. 5.21 Course of the reaction in D point of the body, designated as 4 – 

depending on time. 

 
 

Fig. 5.22 Course of the reaction in C point of the body, designated as 3 – 

depending on time. 

5.3.2    Distribution of the stress in items (members) of planar mechanism  

The distribution of the stress for bodies [4,12-13], designated as 3, 6 can be seen in 

Fig. 5.23- Fig. 5.26. 
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Fig. 5.23 Distribution of the stresses (Pa) for body, designated as 3. 

 

 

Fig. 5.24 Course of the stresses for body, designated as 3 – depending on time. 

 

Fig. 5.25 Distribution of the stresses (Pa) for body, designated as 6. 
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Fig. 5.26 Course of the stresses for body, designated as 6 – depending on time. 

 

5.4   Kinematic Analysis for Ten-Item Mechanism 

 Considering the ten-item planar mechanism, the vector method [28],[40] is used 

for solution relating to field of positions, velocities and accelerations. The 

numerical solution procedures are carried out for predefined input parameters or 

values (5.22) relating to the Stirling engine, which can be seen in Fig. 5.27. The 

kinematic scheme can be seen in the Fig. 5.28. The equations of position (5.24) are 

differentiated on the basis of   variables and it leads to the obtaining of the 

equations of velocities (5.25). Subsequently, the given equations of velocities are 

transformed to matrix form (5.36). If the equations (5.25) are differentiated once 

more, the equations of accelerations (5.26) are obtained and after that, they are 

transformed to the matrix form (5.37). The equations from (5.27) up to (5.35) are 

valid and used for calculation of kinematic values of distance, speed (velocity) and 

acceleration for D, K, J points. The given solution procedures are carried out by 

means of the Nastran software and results of kinematic analysis are shown in Figs. 

from 5.29 to 5.35. 
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Input parameters: 

  

  

  

  

  

  

  

  

(5.22) 

 

 

 

Fig. 5.27 The computational model of the Stirling engine 
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Fig. 5.28 Kinematic scheme of mechanism 

The variables are: 

 (5.23) 

Considering ABDA, ABCEFGHJA, EFGHJE and FKLMNF, the equations of the 

position for the loop are: 

   9876543287654321 ,,,,,,,,,,,,,, rrr 
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(5.24) 

If the equations of the positions (5.24) are differentiated on the basis of       

variables, the system of velocity equations (5.25) is obtained and after further 

differentiation, the system of acceleration equations (5.26) can be obtained. 

 

 

 

 

(5.25) 

 

 

 

 

(5.26) 

The equations from (5.27) up to (5.35) are valid and used for calculation of 

kinematic values of distance, velocity and acceleration for D, K, J points. 
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The system of equations (5.25) is transformed to matrix form (5.36) as well as the 

system of equations (5.26) is transformed to the matrix form (5.37). 

 

(5.36) 

 

 

 

(5.37) 

 



























































































































0

0

0

0

cos

sin

cos

sin

1cos00cos000

0sin00sin000

00sincos)cos(000

00cossin)sin(000

0000)cos(cos0)cos(

0000)sin(sin0)sin(

0000001)cos(

0000000)sin(

1

1

1

1

8

7

6

5

4

3

2

1

78452

78452

56451

56451

45134122

45134122

121

121

qqa

qqa

qqa

qqa

aa

aa

aa

aa

aaa

aaa

a

a









































































































































8

7

6

5

4

3

2

1

78452

78452

56451

56451

45134122

45134122

121

121

1cos00cos000

0sin00sin000

00sincos)cos(000

00cossin)sin(000

0000)cos(cos0)cos(

0000)sin(sin0)sin(

0000001)cos(

0000000)sin(

















































aa

aa

aa

aa

aaa

aaa

a

a



















































7
2
784

2
452

7
2
784

2
452

4
2
4515

2
56

4
2
4515

2
56

2
114

2
4513

2
341

2
122

2
114

2
4513

2
341

2
122

2
111

2
121

2
111

2
121

sinsin

coscos

)sin(sin

)cos(cos

sincos)sin(sin)sin(

cossin)cos(cos)cos(

sincos)sin(

cossin)cos(

































aa

aa

aa

aa

qqaqqaaaa

qqaqqaaaa

qqaqqaa

qqaqqaa



 61 

The results from the kinematic analysis 

 

Fig. 5.29 The course of displacements for D, L, J points in dependence on angular 

rotation of crank 

 

Fig. 5.30 The course of velocity for D, L, J points in dependence on angular 

rotation of crank  
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Fig. 5.31 The course of acceleration for D, L, J points in dependence on angular 

rotation of crank 

 

Fig. 5.32 The course of angular position for individual bodies in dependence on 

angular rotation of crank 
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Fig. 5.33 The course of angular velocity for individual bodies in dependence on 

angular rotation of crank 

 

Fig. 5.34 The course of angular acceleration for individual bodies in dependence 

on angular rotation of crank 
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Rotational displacement of crank by 0° Rotational displacement of crank by 120° 

 
 

Rotational displacement of crank by 180° 

 

Rotational displacement of crank by 300° 

 

Fig. 5.35 Animation of the motion (movement) of the mechanism 

5.5    Kinematic Analysis of the Pressing Machine 

In relation to the six-item mechanism [39] (mechanism with the six members), the 

field of positions, speeds (velocities) and accelerations is going to be solved by the 

vector method. The numerical solution is carried out for the specified input values 

(5.38) if the specified angle of rotational displacement for the driving item 

(member), designated as 2, is: and the revolutions per minutes are: n 

= 3.5 rpm.  The mechanism represents a pressing machine (Fig. 5.36), the 

kinematic scheme of which can be seen in Fig. 5.37. Formation of the equations of 

the position (5.40), (5.41) the differentiation of which, for  variables, 

gives the specific equations for the speeds (velocities) (5.42) and then the given 

equations are rewritten into a matrix form (5.44). If the equations (5.42) are 

3152 q

 4,3,2,1ii
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differentiated once more, we can get equations (5.43) for the accelerations and the 

given equation can be rewritten into a matrix form (5.45). 

To simplify the numerical solution, the solution can be carried out by help of 

the submatrix equations (5.46) and (5.47). The given solution was carried out by 

using the SolidWorks and the results of the kinematic analysis are shown in Figs. 

5.38, 5.39, 5.40 and the animation for the first four positions is shown in Fig. 5.41.  

  
 

 

Fig. 5.36 Planar mechanism – computational model. 

 

 

 

Fig. 5.37 Kinematic scheme of the given mechanism  
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The variables are: 

 (5.39) 

The equations of the position for the BACEB loop are: 

 (5.40) 

The BE vector can be rewritten into two vectors in the direction of the coordinate 

axes. The position equations for the BACDB loop are: 

 (5.41) 

The BD vector is rewritten into two vectors in the direction of the l6y, l6x coordinate 

axes: 

 (5.42) 
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(5.45) 
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. 

 

It is important to point out that the following condition is valid: 

  ,    ,    , 

 

 

 

The results of the kinematic analysis: 
 

 

 

 

 

 

 

 

Fig. 5.38 Course of the position for individual items (bodies) of the mechanism 

 

 

 

 

 

 

 

Fig. 5.39 Course of the speeds (velocities) for the individual bodies of the 

mechanism 
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Fig. 5.40 Course of the acceleration for the individual bodies of the mechanism 

 

Fig. 5.41 Animation of the four positions of the mechanism  
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5.5.1   Dynamic analysis of planar mechanism  

The main objective of the dynamic analysis is connected with specification of the 

loading for the individual items and determination of the courses relating to mutual 

reactions, referring to individual kinematic connections [4, 10–12]. The analysis 

was based on utilisation of the nonlinear model. Relating to the analysis, the other 

important values were utilised: 

 modulus of elasticity (Young’s modulus): E = 210 GPa,  

 Poisson’s ratio: µ = 0.3, 

 density of material:  = 7850 kg m
–3

.   

The analysis of the planar mechanism is based on selection of the linear tetrahedral 

element with four nodes (see chapter 2.2).  

Fig. 5.42 represents the course of the reaction in D point of the body, designated 

as 6 and Fig. 5.43 represents the course of the reaction in A point of the body, 

designated as 3. Fig. 5.44 shows the degraded degrees of freedom of the given 

mechanism. The network of finite elements of the planar mechanism can be seen 

in Fig. 5.45. 

 
 

Fig. 5.42 Course of the reaction in D point of the item (body), designated as 6 – 

depending on time. 

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

0 5 10

F
 [

N
] 

time [s] 

Dx 



 71 

 
 

Fig. 5.43 Course of the reaction in A point of the item (body), designated as 3 – 

depending on time. 

 
Fig. 5.44 Degraded degrees of freedom of the mechanism.  
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Fig. 5.45 Finite element network.  

The distribution of the stress for mechanism [13, 14] can be seen in Fig. 5.46 and 

distribution of the displacement for mechanism is shown in Fig. 5.47. 

 

Fig. 5.46 Distribution of the stresses (Pa) for the mechanism. 
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Fig. 5.47 Distribution of the displacement (mm) for the mechanism 

 

5.6    Kinematic Analysis of the manipulator for removal of rough tyres 

The manipulator for removal of rough tyres (Fig. 5.48) is composed of twenty-

five individual bodies which are held together by help of kinematic connections 

and it is in the accordance with real state. The computational model of the 

manipulator can be seen in the Fig. 5.49. 

 

Fig. 5.48 The manipulator for removal of rough tyres 
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Fig. 5.49 Computational model of the manipulator 

Using the kinematic analysis [32, 34, 35, 38], the main objective of solution is 

connected with the determination and entering of the position domains, speed 

(velocity) domains as well as acceleration of the individual items (members or 

bodies) in relation to the specified input values and it can be seen in the Tab. 5.1.  

 

Tab. 5.1 Influences of external forces and kinematic phenomena on manipulator  

1.  maximum gravity or load capacity, using 22.5” tyre  80 kg 

2.  speed (velocity) of movement for manipulating item 
(member) in horizontal direction 

400 mm.s
-1 

3.  speed (velocity) of movement for manipulating item 
(member) in vertical direction 

90 mm.s
-1 

4.  speed (velocity) of disengaging for clamps used for 
removing  

20 mm.s
-1 

 

The simulation of operation relating to manipulator can be seen in the Fig. 

5.50. In the given figure, there are 6 steps relating to technology of removing and 

manipulation with the tyre: 
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1. clamping of the tyre  

2. removing of the tyre from the transferring of assembling or building up line  

3. inspection of the tyre by operator 

4. removing of the tyre above the rotating storage bin  

5. tilting of the tyre 

6. placing of the tyre into the rotating storage bin  

It has to be pointed out that each one of the mentioned positions or steps is 

closely connected with specific influence referring to loading process of backbone 

frame of the manipulator. 

 

Fig. 5.50 Simulation of manipulator operation 

In the Fig. 5.51, there is the tyre, which is clamped in the clamps of 

manipulator as well as there is also the physical model for clamping mechanism. 

The course of the speed (velocity) as well as the acceleration of the movement of 

displacement rail or frame can be seen in the Fig. 5.52 and Fig. 5.53. 
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Fig. 5.51 Manipulator clamps and clamping mechanism for tyre clamping 

 

Fig. 5.52 Speed of the motion (movement) of the displacement rail (frame) 

 

Fig. 5.53 Acceleration of the motion (movement) for the displacement rail 

(frame) 
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6  Kinematic and Dynamic Analysis and Distribution of     

    Stress for Planar Mechanisms by Means of SolidWorks   

    Software 
 

In order to create a model of the mechanism, the calculation program uses the 

elements by help of which the resulting mechanism (system of bodies) is 

assembled and the motion equations of the mechanism are created by combination 

of the equations for the individual members or items of the mechanism. The 

individual elements are: connection of a body point with a frame, connection of 

points of two bodies, rotary (articulated or joint) connection of two bodies, sliding 

connection of two bodies, connection of two bodies by help of a drawbar with 

articulated (joint) end, with two sliding ends and combination of joint with sliding 

end, rope connection , wheels - rolling, cams, connection of a point with a curve 

and a surface, spherical joints and their various connections, linear spring and 

damper, absolute drives, relative drives and linear drives. 

6.1   Kinematic and Dynamic Analysis and Distribution of Stress for  Four-   

        Item Mechanism   
 

The planar mechanism representative (Fig. 6.1) consists of four bodies and was 

used as computational model. Using the kinematic analysis and dynamic analysis 

and subsequent simulation [30], the main objective is connected with the 

determination and entering of the position domains, speed (velocity) domains as 

well as acceleration of the individual bodies in relation to the specified input values 

of the angular velocity for the driving body, designated as 2. The angular velocity 

for the body, designated as 2, is specified in this way: ω21=36 °/s, where ω21=36 

°/s is constant and it is changed in dependence on time (Fig. 6.2). 

Specified input values can be seen in (Fig. 6.1). 
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Fig. 6.1 Planar mechanism – computational model 

Course of input value for angular velocity can be seen in Fig. 6.2 and angular 

acceleration of 2, 3, 4 bodies in dependence on time can be seen in Fig. 6.3. 

 

Fig. 6.2 Angular velocity of 2, 3, 4 bodies in dependence on time 

 

Fig. 6.3 Angular acceleration of 2, 3, 4 bodies in dependence on time 
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The simulation of operation relating to planar mechanism can be seen in the Fig. 

6.4 and it is for time step referring to one second while the whole simulation takes 

place for ten seconds. 

 

  

t = 1 s t = 2 s 

  

t = 3 s t = 4 s 

  

t = 5 s t = 6 s 

  

t = 7 s t = 8 s 

  

t = 9 s t = 10 s 

Fig. 6.4 Simulation of planar mechanism operation for ten positions 
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The whole course of the velocity and acceleration for C, D, E points of bodies can 

be seen in Fig.6.5 and Fig.6.6. 

 

Fig. 6.5 Velocity in points (C, D, E) – in dependence on the time 

 

Fig. 6.6 Acceleration in points (C, D, E) – in dependence on the time 

The main objective of the dynamic analysis is connected with specification of the 

loading for the individual items and determination of the courses relating to mutual 

reactions, referring to individual kinematic connections. Fig. 6.7 represents the 

course of the reaction in C point of the body, designated as 2 and Fig.6.8 represents 

the course of the reaction in B point of the body, designated as 4. 
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Fig. 6.7 Course of the reaction in C point of the body, designated as 2 – in 

dependence on the time 

 

Fig. 6.8 Course of the reaction in B point of the body, designated as 4 –in 

dependence on the time 

6.1.1 Type of finite elements and material properties 

The analysis of the planar mechanism is based on selection of the linear tetrahedral 

element with four nodes (see chapter 2.2).  

The analysis is based on utilisation of the linear model. Relating to the analysis, the 

other important values are utilised: 

- modulus of elasticity (Young’s modulus): E = 2.1 e
11

 (Pa),  

- Poisson’s ratio: µ = 0.3, 

- density of material:  = 7850 (kg.m
-3

).   
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6.1.2 Distribution of the Stress in Items of Planar Mechanism 

The distribution of the stress for connected bodies, designated as 1, 2, 3, 4, can be 

seen in Figs. 6.9-6.16. 

 

Fig. 6.9 Distribution of the stress for body, designated as 1 in  Pa  

 

Fig. 6.10 Course of the stress for body, designated as 1 – in dependence on the 

time 
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Fig. 6.11 Distribution of the stress for body, designated as 2 in  Pa  

 

Fig. 6.12 Course of the stress for body, designated as 2 – in dependence on the 

time 

 

Fig. 6.13 Distribution of the stress for body, designated as 3 in  Pa  
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Fig. 6.14 Course of the stress for body, designated as 3 – in dependence on the 

time 

 

Fig. 6.15 Distribution of the stress for body, designated as 4 in  Pa  

 

Fig. 6.16 Course of the stress for body, designated as 4 – in dependence on the 

time 
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6.2    Kinematic Analysis and Distribution of Stress for Five-Item Mechanism  

The planar mechanism representative (Figure 6.17) consists of five bodies and it 

was used as computational model. Using the kinematic analysis and subsequent 

simulation, the main objective is connected with the determination and entering of 

the position domains, speed (velocity) domains as well as acceleration of the 

individual bodies in relation to the specified input values of the angular velocity for 

the driving body designated as 2. The angular velocity for the body, designated as 

2, is specified in this way: ω21=36 °/s, where ω21=36 °/s is constant (Figure 

6.23). The dimensional parameters of individual bodies are shown in Figures 6.18-

6.22. 

 

Fig. 6.17 Planar mechanism – computational model  

 

 
Fig. 6.18 Frame, designated as 1 and its dimensional parameters in  m  
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Fig. 6.19 Item or body (member), designated as 2 and its dimensional parameters 

in  m  

 

 

 

Fig. 6.20 Item or body (member) 3 and its dimensional parameters in  m  

 

 

Fig. 6.21 Item 4 and its dimensional parameters in  m  
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Fig. 6.22 Item or body (member) 5 and its dimensional parameters in  m  

Course of input value for angular velocity can be seen in Figure 6.23 and angular 

acceleration of 2, 3, 4, 5 bodies in dependence on time can be seen in Figure 6.24. 

 

 
 

Fig. 6.23 Angular velocity of 2, 3, 4, 5 bodies (members or items) in dependence 

on the time 
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Fig. 6.24 Angular acceleration of 2, 3, 4, 5 bodies (members or items) in 

dependence on the time 

The simulation  of 4 positions can be seen in Figure 6.25.  

  

time = 0 s time = 1 s 

  

time = 7 s time = 8 s 

Fig. 6.25 Simulation of planar mechanism operation for four positions 
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Course of the velocity or speed can be seen in Figure 6.26 and acceleration of 2, 3, 

4, 5 bodies in dependence on time can be seen in Figure 6.27. 

 
 

 

Fig. 6.26 Velocity or speed of bodies for 2, 3, 4, 5 – in dependence on the time 

 
 

Fig. 6.27 Acceleration of bodies for 2, 3, 4, 5 – in dependence on the time 
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6.2.1 Type of finite elements and material properties 

The analysis of the planar mechanism is based on selection of the linear tetrahedral 

element with four nodes (see chapter 2.2).  

The analysis is based on utilisation of the linear model. Relating to the analysis, the 

other important values are utilised: 

- modulus of elasticity (Young’s modulus): E = 2.1 e
11

 (Pa),  

- Poisson’s ratio: µ = 0.3, 

- density of material:  = 7850 (kg.m
-3

).   

6.2.2 Distribution of the Stress in Items of Planar Mechanism  

The distribution of the stress for individual bodies (items or members), designated 

as 1, 2, 3, 5, can be seen in Figs. from 6.28 to 6.35. 

 
Fig. 6.28 Distribution of the stresses Pa for body, designated as 1 
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Fig. 6.29 Course of the stresses for body, designated as 1 – in dependence on the 

time 

 

Fig. 6.30 Distribution of the stresses Pa for body, designated as 2 

 

Fig. 6.31 Course of the stresses for body, designated as 2 – in dependence on the 

time 
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Fig. 6.32 Distribution of the stresses Pa  for body, designated as 3  

 

Fig. 6.33 Course of the stresses for body, designated as 3 – in dependence on the 

time 

 

Fig. 6.34 Distribution of the stresses Pa  for body, designated as 5  
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Fig. 6.35 Course of the stresses for body, designated as 5 – in dependence on the 

time 

6.3    Kinematic and Dynamic Analysis and Distribution of Stress for Six-Item  

         Mechanisms  

The planar mechanism representative (Fig. 6.36) consists of six bodies and was 

used as computational model. Using the kinematic analysis and dynamic analysis 

and subsequent simulation [33], the main objective is connected with the 

determination and entering of the position domains, speed (velocity) domains as 

well as acceleration of the individual bodies in relation to the specified input values 

of the angular velocity for the driving body designated as 2. The angular velocity 

for the body, designated as 2, is specified in this way: ω21=1 °/s and α21=0,7 

°/s
2
, where ω21=1 °/s is not constant and it is changed in dependence on time 

(Fig. 6.37). Specified input values can be seen in Fig. 6.38. 

 

Fig. 6.36 Planar mechanism – computational model 
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Course of input value for angular velocity and angular acceleration is in Fig. 6.37 

and Fig. 6.38. 

Angular velocity of 2, 5, 6 bodies in dependence on time

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

time [s]

a
n

g
u

la
r 

v
e
lo

c
it

y
  

[°
/s

]

6

2

5

 

Fig. 6.37 Angular velocity of 2, 5, 6 bodies in dependence on the time 

 

Fig. 6.38 Angular acceleration of 2, 5, 6 bodies in dependence on the time 

The simulation of operation relating to planar mechanism can be seen in the Fig. 

6.39 for time step referring to one second while the whole simulation takes place 

for ten seconds. 
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t = 1 s t = 2 s 

  

t = 3 s t = 4 s 

  

t = 5 s t = 6 s 

  

t = 7 s t = 8 s 

  

t = 9 s t = 10 s 

Fig. 6.39 Simulation of planar mechanism operation for ten positions 
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The whole course of the velocity and acceleration for C, D, E, F points of bodies 

can be seen in Fig.6.40 and Fig.6.41. 

 

Fig. 6.40 Velocity in points (C, D, E, F) – in dependence on the time 

 

Fig. 6.41 Acceleration in points (C, D, E, F) – in dependence on the time 

The main objective of the dynamic analysis is connected with specification of the 

loading for the individual items and determination of the courses relating to mutual 

reactions, referring to individual kinematic connections.  

Fig. 6.42 represents the course of the reaction in F point of the body, designated as 

6 and Fig.6.43 represents the course of the reaction in D point of the body, 

designated as 5. 
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Fig. 6.42 Course of the reaction in F point of the body, designated as 6 – in 

dependence on the time 

 

Fig. 6.43 Course of the reaction in D point of the body, designated as 5 – in 

dependence on the time 

6.3.1 Type of finite elements and material properties   

The analysis of the planar mechanism was based on selection of the linear 

tetrahedral element with four nodes (see chapter 2.2).  

The analysis was based on utilisation of the linear model. Relating to the analysis, 

the other important values were utilised: 

- modulus of elasticity (Young’s modulus): E = 2.1 e
11

 (Pa),  

- Poisson’s ratio: µ = 0.3, 

- density of material:  = 7850 (kg.m
-3

).   
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6.3.2 Distribution of the Stress in Items of Planar Mechanism  

The distribution of the stress for connected bodies (items or members), designated 

as 1, 2, 3, 5 can be seen in Figs. from 6.44 to 6.51. 

 

Fig. 6.44 Distribution of the stress for body, designated as 1 in   Pa  

 

Fig. 6.45 Course of the stress for body, designated as 1 – in dependence on the 

time 
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Fig. 6.46 Distribution of the stress for body, designated as 2 in  Pa  

 

Fig. 6.47 Course of the stress for body, designated as 2 – in dependence on the 

time 

 

Fig. 6.48 Distribution of the stress for body, designated as 3 in  Pa  
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Fig. 6.49 Course of the stress for body, designated as 3 – in dependence on the 

time 

 

Fig. 6.50 Course of the stress for body, designated as 5 in  Pa  

 

Fig. 6.51 Course of the stress for body, designated as 5 – in dependence on the 

time 
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Example 1 

The planar mechanism representative (Fig. 6.52) consists of six bodies and it is 

used as computational model. Using the kinematic analysis and dynamic analysis 

and subsequent simulation [33], the main objective is connected with the 

determination and entering of the position domains, speed (velocity) domains as 

well as acceleration of the individual bodies in relation to the specified input values 

of the angular velocity for the driving body, designated as 2. The angular velocity 

for the body, designated as 2, is specified in this way: ω21=20 °/s and α21=0,7 

°/s
2
, where ω21 is not constant and it is changed in dependence on the time 

(Fig.6.53). Specified input values can be seen in Figure 6.54. 

 

 

Fig. 6.52 Planar mechanism – computational model  

Course of input value for angular velocity and angular acceleration is in Fig.6.53 

and Fig.6.54. 
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Fig. 6.53 Angular velocity of 2, 3, 4, 5, 6 bodies in dependence on the time  

 

Fig. 6.54 Angular acceleration of 2, 3, 4, 5, 6 bodies in dependence on the time  

Relating to planar mechanism, the simulation of operation can be seen in the Fig. 

6.55 for time step referring to one second while the whole simulation takes place 

for ten seconds. 
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time = 1 s time = 2 s 

  

time = 3 s time = 4 s 

  

time = 5 s time = 6 s 

  

time = 7 s time = 8 s 

  

time = 9 s time = 10 s 

Fig. 6.55 Simulation of planar mechanism operation for ten positions 

The whole course of the velocity (speed) and acceleration for C, D, E, F points 

of bodies can be seen in Fig.6.56 and Fig.6.57. 
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Fig. 6.56 Velocity (speed) in points (D, E, F, G) – in dependence on the time 

 
Fig. 6.57 Acceleration in points (D, E, F, G) – in dependence on the time 

The main objective of the dynamic analysis is connected with specification of 

the loading for the individual items (members or bodies) and determination of the 

courses relating to mutual reactions, referring to individual kinematic connections. 

The analysis was based on utilisation of the linear model. Relating to the analysis, 

the other important values were utilised: 

- modulus of elasticity (Young’s modulus): E = 210 [GPa],  

- Poisson’s ratio: µ = 0.3, 

- density of material:  = 7850 [kg.m
-3

].   

Fig. 6.58 represents the course of the reaction in D point of the body, designated as 

2 and Fig.6.59 represents the course of the reaction in C point of the body, 

designated as 1. 
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Fig. 6.58 Course of the reaction in D point of the body, designated as 2 – in 

dependence on the time 

 
 

Fig. 6.59 Course of the reaction in C point of the body, designated as 1 – in 

dependence on the time 

The distribution of the stress for bodies, designated as 1, 2, 3, 4 can be seen in Figs. 

from 6.60 to 6.67. 

 

Fig. 6.60 Distribution of the stresses Pa for body, designated as 1 
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Fig. 6.61 Course of the stresses for body, designated as 1 – in dependence on the 

time 

 

Fig. 6.62 Distribution of the stresses Pa for body, designated as 2 

 

Fig. 6.63 Course of the stresses for body, designated as 2 – in dependence on the 

time 
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Fig. 6.64 Distribution of the stresses Pa for body, designated as 3 

 

Fig. 6.65 Course of the stresses for body, designated as 3 – in dependence on the 

time 

 

Fig. 6.66 Course of the stresses Pa for body, designated as 4 
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Fig. 6.67 Course of the stresses for body, designated as 4 – in dependence on the 

time 

Example 2 

The planar mechanism (Fig. 6.68) represents mechanism consisting of six bodies. 

Using the kinematic analysis and dynamic analysis and subsequent simulation 31], 

the main objective is connected with the determination and entering of the position 

domains, speed (velocity) domains as well as acceleration of the individual bodies 

in relation to the specified input values of the angular velocity for the driving body 

designated as 2. The angular velocity for body, designated as 2 is specified:

1
21 36  s . 

Input values: 

a = 1.7 m, b = 1.3 m, c = 0.1 m, h = 0.1 m (thickness of bodies), l2 = 0.5 m, 

l3 = 0.1  m,  l4 = 1.4  m, l5=1.4  m, l6 = 0.9  m. 

 
Fig. 6.68 Planar mechanism 
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The simulation of operation relating to planar mechanism can be seen in the Fig. 

6.69 for time step referring to one second while the all simulation takes place for 

ten seconds. 

   

t = 1 s t = 2 s t = 3 s 

   

t = 4 s t = 5 s t = 6 s 

  

t = 7 s t = 8 s 

  

t = 9 s t = 10 s 

Fig. 6.69 Simulation of planar mechanism operation 

The whole course of the velocity and acceleration for B, C, D, F points of bodies 

can be seen in Fig.6.70 and Fig.6.71. 
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Fig. 6.70 Velocity (speed) of B, C, D, F points in dependence on the time 

 
Fig. 6.71 Acceleration of B, C, D, F points in dependence on the time 

The computational model of the planar mechanism can be seen in the Fig. 8.72. 

 
Fig. 6.72 Computational model of the planar mechanism 
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The main objective of the dynamic analysis is connected with specification of 

the loading for the individual items and determination of the courses relating to 

mutual reactions for individual kinematic connections. The analysis was based on 

utilisation of the linear model. Relating to the analysis, the other important and 

utilised input values are: 

- modulus of elasticity (Young’s modulus): E = 2.1 e
11

 (Pa),  

- Poisson’s ratio: µ = 0.3, 

- density of material:  = 7850 (kg.m
-3

).   

Fig. 6.73 represents the course of the reaction in E point of the body, designated as 

4 and Fig. 6.74 represents the course of the reaction in F point of the body, 

designated as 6. 

 
Fig. 6.73 Course of the reaction in E point of the body, designated as 4 in 

dependence on the time  

 
Fig. 6.74 Course of the reaction in F point of the body, designated as 6 in 

dependence on the time  
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Moreover, the distribution of the stress for bodies, designated as 1, 3, 6, can be 

seen in Figs. 6.75-6.77. 

 

Fig. 6.75 Distribution of the stress for body, designated as 1 

 

Fig. 6.76 Distribution of the stress for body, designated as 3 

 

Fig. 6.77 Distribution of the stress for body, designated as 6 
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Example 3 

The planar mechanism representative (Fig. 6.78) consists of six bodies and it was 

used as computational model. Using the kinematic analysis and dynamic analysis 

and subsequent simulation 29], the main objective is connected with the 

determination and entering of the position domains, speed (velocity) domains as 

well as acceleration of the individual bodies in relation to the specified input values 

of the angular velocity for the driving body, designated as 2. The angular velocity 

for body, designated as 2, is specified in this way: ω21=20 °/s and  α21=3.2 °/s
2
, 

where ω21=20 °/s is not constant and  it is changed in dependence on time (Fig. 

6.79). 

Specified input values: 

a = 1.5 m, b = 1.5 m, c = 0.1 m, h = 0.1 m (thickness of bodies), l2  = 0.5 m, 

l3 = 1,4  m,  l4 = 1.6  m, l5=1.3  m, l6 = 2,2  m. 

 

Fig. 6.78 Planar mechanism – computational model 

Course of input value for angular velocity and angular acceleration can be seen in 

Fig. 6.79 and Fig. 6.80. 
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Fig. 6.79 Angular velocity of 2, 3, 4, 5 bodies in dependence on the time 

 

Fig. 6.80 Angular acceleration of 2, 3, 4, 5 bodies in dependence on the time 

The simulation  of planar mechanism operation for four positions can be seen in the 

Fig. 6.81.  

 

Fig. 6.81 Simulation of planar mechanism operation for four positions 
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The whole course of the velocity (speed) and acceleration for C, D, F points of 

bodies can be seen in Fig. 6.82 and Fig. 6.83. 

 

Fig. 6.82 Velocity in points (C, D, F) – in dependence on the time 

 

Fig. 6.83 Acceleration in points (C, D, F) – in dependence on the time 
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Fig. 6.84 represents the course of the reaction in E point of the body, designated as 

4 and Fig. 6.85 represents the course of the reaction in D point of the body, 

designated as 3. 

 

Fig. 6.84 Course of the reaction in E point of the body, designated as 4 – in 

dependence on the time 

 

Fig. 6.85 Course of the reaction in D point of the body, designated as 3 – in 

dependence on the time 

The distribution of the stress for connected bodies, designated as 1, 4, 5, 3, can be 

seen in Figs. 6.86-6.93. 
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Fig. 6.86 Distribution of the stress for body, designated as 1 in Pa 

 Fig. 

6.87 Course of the stress for body designated as 1 – in dependence on 

the time 

 

Fig. 6.88 Distribution of the stress for body, designated as 4 in Pa 
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Fig. 6.89 Course of the stress for body, designated as 4 – in dependence on the 

time 

 

Fig. 6.90 Distribution of the stress for body designated as 5 in Pa 

 

Fig. 6.91 Course of the stress for body designated as 5 – in dependence on the 

time 
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Fig. 6.92 Distribution of the stress for body, designated as 3 in Pa 

 

Fig. 6.93 Course of the for body, designated as 3 – in dependence on the time 
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Example 4 

The planar mechanism representative (Fig. 6.94) consists of five bodies and it 

was used as computational model. Using the kinematic analysis [1-2]  and 

subsequent simulation [7–9], [15], the main objective is connected with the 

determination and entering of the position domains, speed (velocity) domains as 

well as acceleration of the individual bodies. In relation to the five-item mechanism 

(mechanism with the five members), the field of positions, speeds (velocities) and 

accelerations is going to be solved by the vector method. The numerical solution is 

carried out for the specified input values (6.1) if the specified angle of rotational 

displacement for the driving item (member), designated as 2, is: and the 

angular velocity for the body, designated as 2  is ω21=10 rad.s-1 = konst.  The 

kinematic scheme of which can be seen in Fig. 6.95. Formation of the equations of 

the position (6.3), (6.4), (6.5)  the differentiation of which, for  

variables (6.2), gives the specific equations for the speeds (velocities) (6.6) and 

then the given equations are rewritten into a matrix form (6.7). If the equations 

(6.6) are differentiated once more, we can get equations (6.8) for the accelerations 

and the given equations can be rewritten into a matrix form (6.9).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.94 Computational model 

21021 

)6,5,4,3,2,1(i
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Fig. 6.95 Kinematic scheme of the given mechanism 

Input parameters: 
 

               (6.1) 
 

The variables are: 
 

                                                                 (6.2) 

       

The equations of the position for the ABCDA loop are: 
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The equations of the position for the ABEGA loop are: 
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The equations of the position for the ABEFHA loop are: 
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The results from the kinematic analysis 

The given solution was carried out by using the SolidWorks and the results of 

the kinematic analysis are shown in Figs. 6.96, 6.97 and the animation for the first 

four positions is shown in Fig. 6.98. 

 

 Fig. 6.96 Course of the position (blue), velocity (red) and acceleration (green) for 

the body 3  of the mechanism 

 

Fig. 6.97 Course of the position (blue), velocity (red) and acceleration (green) for 

the body 5  of the mechanism 

 

0.00 0.69 1.38 2.07 2.76 3.45 4.14 4.83 5.52 6.21 6.90

Tim e (sec)

59

61

63

65

67

L
in

e
ar

 D
is

p
la

c
e
m

en
t2

 (
m

m
)

 0

 4

 7

11

15

V
e
lo

c
it
y2

 (
m

m
/s

e
c)

 1

 6

12

18

24

A
c
c
el

e
ra

tio
n
2 

(m
m

/s
ec

**
2
)

0.00 0.69 1.38 2.07 2.76 3.45 4.14 4.83 5.52 6.21 6.90

Tim e (sec)

77

78

79

80

81

L
in

e
ar

 D
is

p
la

c
e
m

en
t4

 (
m

m
)

 0

 4

 9

13

17

V
e
lo

c
it
y4

 (
m

m
/s

e
c)

 0

12

23

34

46

A
c
c
el

e
ra

tio
n
4 

(m
m

/s
ec

**
2
)



 124 

 

 

 

 

 

 

 

 

 

Fig. 6.98 Animation of the four positions of the mechanism 

 The analysis of the planar mechanism is based on selection of the linear 

tetrahedral element with four nodes (see chapter 2.2).  

The main objective of the dynamic analysis is connected with specification of the 

loading for the individual items and determination of the courses relating to mutual 

reactions, referring to individual kinematic connections [8], [10-14], [16]. 

The analysis was based on utilisation of the nonlinear model. Relating to the 

analysis, the other important values were utilised: 

 modulus of elasticity (Young’s modulus): E = 210 GPa,  

 Poisson’s ratio: µ = 0.3, 

 density of material:  = 7850 kg m
–3

.   

Fig. 6.99 shows the degraded degrees of freedom of the given mechanism. 
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Fig. 6.99 Degraded degrees of freedom of the mechanism 

 

The network of finite elements of the planar mechanism can be seen in  

Fig. 6.100. 
 

 

Fig. 6.100 Finite element network 
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The distribution of the stress for mechanism [17-18] can be seen in Fig. 6.101 and 

distribution of the displacement for mechanism is shown in Fig. 6.102. 

 

Fig. 6.101 Distribution of the stresses (Pa) for the mechanism 

 

 

Fig. 6.102 Distribution of the displacement (mm) for the mechanism 
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 7 Procedures for Kinematic and Dynamic Analysis of 

Planar  Mechanisms by Means of SolidWorks Software 

 The following chapter includes the introduction and description of the 

procedures which are closely connected with kinematic and dynamic analysis of a 

six-item body system (Fig.7.1), using the SolidWorks software 36].  

 

Input parameters: 







 konstsq

mYEFmLDAmLCE

mLCDmLBCmLAB

E

1
215432

15

432

.deg36,343,270,60,20

,048.0,1.0,06.0

,09.0,095.0,045.0


 

 

Obr. 7.1  Kinematic scheme of mechanism 

The variables are: 

   Ex,,,,,, 5434321                                                                                                  (7.1) 

The equations of the position for the ABCDA loop are:  

 

0sinsinsin:

0coscoscos:

4433222

14433221









LLLf

LLLLf
                                                   (7.2) 

 

The equations of the position for the ABCEFA loop are:  
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0sinsinsin:

0coscoscos:

5533224

5533223





E

E

yLLLf

xLLLf




                                                          (7.3) 

 

If the equations of the positions (7.2) and (7.3)  are differentiated on the basis of     

  variables, the system of velocity equations (7.4) is obtained and after 

further differentiation, the system of acceleration equations (7.5) can be obtained. 

0coscoscos:

0sinsinsin:

0coscoscos:

0sinsinsin:

5553332224
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4443332222

4443332221


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











LLLf

xLLLf

LLLf

LLLf

E

                                                                                

(7.4) 
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We rewrite the system of equations (7.4) into the matrix form (7.6) and we rewrite 

the system of equations (7.5) into the matrix form (7.7). 
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            (7.7) 

7.1    Creation of a computational model in the SolidWorks program 

Utilising the drawing technical documentation of individual bodies from 

Fig.7.3 to Fig. 7.15, the individual procedures or steps of kinematic and dynamic 

analysis can result in the creation of the computational model (Fig.7.2). 

Subsequently, the whole set of items or members can be used to create the 

assembly of bodies with individual kinematic connections (Fig.7.15). All of the 

 4,3,2,1ii
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important input values, including boundary or critical conditions, material 

constants, loading and meshing of individual bodies for a given group of elements 

(Fig. 7.16) as well as the start of the kinematic and dynamic analysis (Fig. 7.17) are 

predetermined. The results can be obtained in graphic or numerical form.  

 

Fig. 7.2 The computational model  

 

Fig. 7.3 Frame, designated as 1, and its dimensional parameters in m 
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Fig. 7.4 Model of frame in SolidWorks software 

 

Fig. 7.5 Item or member, designated as 2, and its dimensional parameters in m 

 

Fig. 7.6 Model of body, designated as 2, in SolidWorks software 
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Fig. 7.7 Item (member), designated as 3, and its dimensional parameters in m 

 

Fig. 7.8 Model of body, designated as 3 in SolidWorks software 
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Fig. 7.9 Item or member, designated as 4, and its dimensional parameters in m 

 

Fig. 7.10 Model of the body, designated as 4 in SolidWorks software  
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Fig. 7.11 Item or member, designated as 5, and its dimensional parameters in m 

 

Fig. 7.12 Model of the body, designated as 5 in SolidWorks software 
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Fig. 7.13 Item or member, designated as 6, and its dimensional parameters in m 

 

Fig. 7.14 Model of the body, designated as 6 in SolidWorks software 

 

Fig. 7.15 Final assembly of the model with kinematic connections  
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Fig. 7.16 Determination of the boundary (critical) conditions, material 

constants, loadings and meshing of individual bodies for the given 

group of elements 

 

 

Fig. 7.17 Start of kinematic and dynamic analysis 
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The results from the kinematic analysis: 

Animation of the eight positions of the mechanism can be seen in Fig. 7.18. The 

course of angular velocities and angular acceleration of the individual bodies of the 

mechanism is shown in (Fig. 7.19) and (Fig. 7.20). The course of speed and 

acceleration of individual bodies of the mechanism is shown in (Fig. 7.21) and 

(Fig. 7.22). On (Fig. 7.23) to (Fig. 7.27) are the results of the dynamic analysis. 

    

     

   

   

 Fig. 7.18 Animation of the eight positions of the mechanism  
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Fig. 7.19 Angular velocity of 2, 3, 4, 5, 6 bodies in dependence on the time 

 

Fig. 7.20 Angular acceleration of 2, 3, 4, 5, 6 bodies in dependence on the time 
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Fig. 7.21 Velocity or speed of 2, 3, 4, 5, 6 bodies in dependence on the time 

 

Fig. 7.22 Acceleration of bodies 2, 3, 4, 5, 6 – in dependence on the time 
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The results from the dynamic analysis: 

 
Fig. 7.23 Distribution of the stresses  Pa 

 
 

 

Fig. 7.24 Proportional deformation 

 

 

Fig. 7.25 Displacement course in mm 
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Fig. 7.26 Distribution of the stresses Pa  for body, designated as 6  

Pa 

 

 
Fig. 7. 27 Course of the stresses for body, designated as 6 – in dependence on the 

time 

 

 



 141 

Literature 

[1] ARGYRIS J., MLEJNEK H. P.: Die Methode der Finiten Elemente, Band III, 

Friedr. Vieweg & Sohn, Braunshweig/Wiesbaden 1988. 

[2] Azar, J. J. : Matrix Structural Analysis, Pergamon Press, New York, 1972. 

[3] BATHE K. J., WILSON E. L.: Numerical Methods in Finite Element 

Analysis, New Jersey, Prentice-Hill 1976. 

[4] BATHE K. J., BOLOURCHI S.: Large displacement analysis of three-

dimensional beam structures, International Journal for Numerical Methods in 

Engineering, 1979, Vol. 14,  (961-986). 

[5] BENČA Š.: Metóda konečných prvkov v plasticite, zborník prednášok 

seminára „MKP v nelineárnej analýze konštrukcií“, Vysoké Tatry, apríl 

1990, (90-155). 

[6] BITTNAR Z., ŠEJNOHA J.: Numerické metódy mechaniky I, Vydavatelství 

ČVUT, Praha 1992. 

[7] BITTNAR Z., ŠEJNOHA J.: Numerické metódy mechaniky II, Vydavatelství 

ČVUT, Praha 1992. 

[8] BITTNAR Z., ŘEŘICHA P.: Metoda konečných prvků v dynamice 

konstrukcí, SNTL, Praha 1981. 

[9] BOCKO J., SEGĽA Š.: Numerické metódy mechaniky tuhých a poddajných 

telies, Edícia vedeckej a odbornej literatúry, Košice 2016, ISBN 978-80-553-

3065-5. 

[10] BRAT V.: Handbook of kinematics with examples, SNTL, Prague, 1976. 

[11] BRAT V.: Maticové metódy v analýze a syntéze viazaných mechanických 

systémov, Academia, Praha,1981. 

[12] EDWARD J., HAUG E.: Computer-Aided Kinematics and Dynamics of 

Mechanical Systems, 1989 Allyn and Bacon, Massachusets. 

[13] ERDMAN A. G., SANDOR, G. N., OAKBERG R. G.: A General Method for 

Kineto-Elastodynamic Analysis and Synthesis of Mechanism, Journal of 

Engineering for Industry, 1972. 

[14] JULIŠ K., BREPTA R. a kol.: Mechanika I II, SNTL, Praha 1987. 

[15] KAISER J., SLOŽKA V., DICKÝ J., JURASOV V.: Pružnosť a plasticita, 

ALFA, Bratislava  1990. 

[16] KOLAŘ V., KRATOCHVÍL J., LEITNER F., ŽENÍŠEK A.: Výpočet 

plošných a prostorových konstrukcií metódou konečných prvků, SNTL, 

Praha 1979.   



 142 

[17] KOTEK Z., KUBÍK S., RAZÍM M.: Nelineární dynamické systémy, SNTL, 

Praha 1973. 

[18] KWON Y. W., BANG H.: The Finite Element Method using MATLAB, 

CRC Press, New York 1997. 

[19] Medvec A., Stradiot J., Záhorec O., Caban S.: W., BANG H.: Mechanika III 

Dynamika, SNTL Praha 1988. 

[20] MURÍN J.: Metóda konečných prvkov pre prútové a rámové konštrukcie, 

Vydavateľstvo STU, Bratislava 1999. 

[21] PAGÁČ M. : Učebnice  Solidworks, Vydavateľství Nová media s. r. o., 2017, 

ISBN 978-80-270-0918-3. 

[22] PAUL B. : Kinematics and Dynamics of Planar Machinery, Prentice-Hall, 

New Jersey, (1979) 

[23] SÁGA M., VAVRO J., KOPECKÝ M : Počítačová analýza a syntéza 

mechanických sústav, ISBN 80-968605-4-2, Žilina 2002. 

[24] SERVÍT R., DOLEŽALOVÁ E., CRHA M.: Teorie pružnosti a plasticity I, 

SNTL/ALFA, Praha 1981.   

[25] SERVÍT R., DRAHONOVSKÝ Z., ŠEJNOHA J., KUFNER V.: Teorie 

pružnosti a plasticity II, SNTL/ALFA, Praha 1984.   

[26] TREBUŇA F., JURICA V., ŠIMČÁK F.: Pružnosť a pevnosť I, Vienala, 

Košice 2000. 

[27] TREBUŇA F., JURICA V., ŠIMČÁK F.: Pružnosť a pevnosť II, Vienala, 

Košice 2000. 

[28] Vavro Ján jr., Vavro Ján: Kinematic analysis of stirling engine / Machine 

modelling and simulations 2018, DOI 10.1051/matecconf/201925402040. – 

TUAD PC017455, 1. vyd. – Londýn (Veľká Británia) : Édition Diffusion 

Presse Sciences, 2019. – (MATEC Web of Conferences, ISSN 2261-236X ; 

254). – ISSN 2261-236X, s. 1-8. 

[29] Ján Vavro Jr., Ján Vavro, Petra Kováčiková, Radka Bezdedová, Jakub Híreš : 

Kinematic and dynamic analysis and distribution of stress in items of planar 

mechanisms by means of the MSC ADAMS software, 2017. 

In: Manufacturing Technology. - ISSN 1213-2489. - Vol.17, No.2(2017), 

p.267-270. 

[30] Ján Vavro Jr., Ján Vavro, Petra Kováčiková and Juliána Vršková: Kinematic 

and dynamic analysis and distribution of stress for four-item mechanism  

DOI: https://doi.org/10.1051/matecconf/201815703019 In: MATEC Web of  

Conferences. - ISSN 2261-236X. - Roč.157(2018),03019, s.1-9. 

 

https://doi.org/10.1051/matecconf/201815703019


 143 

[31]  Ján Vavro Jr., Ján Vavro, Petra Kováčiková, Jakub Híreš : Kinematic and 

dynamic analysis and distribution of stress for six-item mechanism, 2018. - 

Spôsob prístupu: https://www.matec-conferences.org/articles/ matecconf/ 

pdf/2018/16/matecconf_mms2018_03020.pdf.In: MATEC Web of 

Conferences. - ISSN 2261-236X. - Roč.157(2018), [9 s]. 

[32]  Ján Vavro, Ján Vavro Jr., and col.: Dynamic Analysis of Winding 

Mechanism during the Manufacturing Process of Passenger and Freight Raw 

Car Tyres, Metallurgical journal no. 7/2012 LXV, ISSN 0018-8069. 

[33] Ján Vavro Jr., Ján Vavro, Petra Kováčiková, Jakub Híreš :Kinematic analysis 

for six-item planar mechanism, 2017. In: Dynamika tuhých a 

deformovatelných těles 2017 : Sborník přednášek z mezinárodní vědecké 

konference. - Ústí nad Labem : UJEP, 2017. - ISBN 978-80-7561-083-6. - 5 

s., CD ROM. 

[34] VAVRO JÁN, VAVRO JÁN JR., KOVÁČIKOVÁ PETRA, HÍREŠ JAKUB: 

Analysis the normal force of winding mechanism for manufacturing of raw 

tyres, 2017. In: Experimentální a výpočtové metody v inženýrství 2017 : 

Sborník příspěvků z mezinárodní vědecké konference pro mladé vědecké 

pracovníky : Univerzita J.E. Purkyně, 2017. - ISBN 978-80-7414-698-5. - [5 

s]., CD ROM. 

[35]  Ján Vavro, Ján Vavro Jr., Beáta Pecušová, Matej Burget : Dynamic analysis 

of lever mechanism for manufacturing of raw tyres, 2018. - Spôsob prístupu: 

https://arl.ujep.cz/arl-ujep/cs/csg/?repo=ujeprepo&key=74756063927. 

In: Manufacturing technology. - ISSN 1213-2489. - Vol.18, 

No.1(2018),p.145-148. 

[36]  Ján Vavro Jr., Ján Varo, Petra Kováčiková, Radka Bezdedová : Kinematic 

and dynamic analysis of planar mechanisms by means of the Solid Works 

software, 2017. - Spôsob prístupu: http://ac.els-

cdn.com/S1877705817307567/1-s2.0-S1877705817307567-

main.pdf?_tid=7e1519d2-54c0-11e7-9dca-

00000aacb360&acdnat=1497857318_899bbf2bcf087d18f8b6cbf147c4ab2c. 

In: Procedia Engineering. - ISSN 1877-7058. - Vol.177, 2017, p.476-481. 

[37]  VAVRO J. KOPECKÝ  M. VAVRO J.JR.: Nové prostriedky a metódy 

riešenia sústav telies III, ISBN 978-80-8075-256-9,  Žilina 2007.  

[38] Ján Vavro Jr., Ján Vavro, Petra Kováčiková, Radka Bezdedová :Kinematic 

and Dynamic Analysis of Planar Mechanism by Means of the Cosmos 

Motion Program, 2017. In: Applied Mechanics and Materials Vol. 816 

(2015) pp. 31-34, doi: 10.4028/www.scientific.net/AMM.816.31. 

[39]  Vavro Ján jr., Vavro Ján: Kinematic analysis of the pressing machine, In: 

Experimentální a výpočtové metody v inženýrství,  6. ročník konference pro 

mladé vědecké pracovníky : 12.- 14. června 2019, Univerzita Jana 

https://www.matec-conferences.org/articles/%20matecconf/%20pdf/2018/16/matecconf_mms2018_03020.pdf
https://www.matec-conferences.org/articles/%20matecconf/%20pdf/2018/16/matecconf_mms2018_03020.pdf
https://arl.ujep.cz/arl-ujep/cs/csg/?repo=ujeprepo&key=74756063927
http://ac.els-cdn.com/S1877705817307567/1-s2.0-S1877705817307567-main.pdf?_tid=7e1519d2-54c0-11e7-9dca-00000aacb360&acdnat=1497857318_899bbf2bcf087d18f8b6cbf147c4ab2c
http://ac.els-cdn.com/S1877705817307567/1-s2.0-S1877705817307567-main.pdf?_tid=7e1519d2-54c0-11e7-9dca-00000aacb360&acdnat=1497857318_899bbf2bcf087d18f8b6cbf147c4ab2c
http://ac.els-cdn.com/S1877705817307567/1-s2.0-S1877705817307567-main.pdf?_tid=7e1519d2-54c0-11e7-9dca-00000aacb360&acdnat=1497857318_899bbf2bcf087d18f8b6cbf147c4ab2c
http://ac.els-cdn.com/S1877705817307567/1-s2.0-S1877705817307567-main.pdf?_tid=7e1519d2-54c0-11e7-9dca-00000aacb360&acdnat=1497857318_899bbf2bcf087d18f8b6cbf147c4ab2c


 144 

Evangelisty Purkyně v Ústí nad Labem, 2019. – ISBN 978-80-7561-185-7, s. 

110-115.  

[40]  Ján Vavro, Ján Vavro Jr., Petra Kováčiková, Jakub Híreš :Kinematic analysis 

for ten-item planar mechanism, 2017.In: Dynamika tuhých a 

deformovatelných těles 2017 : Sborník přednášek z mezinárodní vědecké 

konference. - Ústí nad Labem : UJEP, 2017. - ISBN 978-80-7561-083-6. - 9 

s., CD ROM. 

[41]  Vavro Ján Vavro Ján jr., Pecušová Beáta: Kinematic analysis for seven-item 

planar mechanism, , In: Experimentální a výpočtové metody v inženýrství,  6. 

ročník konference pro mladé vědecké pracovníky : 12.- 14. června 2019, 

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem, 2019. – ISBN 978-

80-7561-185-7, s. 104-109.  

[42] Ján Vavro, Ján Vavro jr.: Aplikácia výpočtových a experimentálních metód 

v gumárenskom priemysle, ISBN 978-80-8075-887-5, s115, ASSA, spol. s. r. 

o., Púchov 2019. 

[43] Ján Vavro, Ján Vavro jr., Ľuboš Marček, Miloš Taraba, Lukáš, Klimek, Pavol 

Čerňava, Kinematic Analysis for Five-Item Mechanism by Means of the 

SolidWorks Program. 2021 Ústí nad Labem : ISBN 978-80-7561-258-8, p 4 

[44] Ján Vavro jr., Ján Vavro, Ľuboš Marček, Miloš Taraba, Lukáš Klimek, Pavol 

Čerňava, Kinematic Analysis for Six-Item Mechanism by Means of the 

SolidWorks Program. 2021 Ústí nad Labem : ISBN 978-80-7561-258-8, p 5. 

[45] J Vavro, J Vavro jr., L Marček, M Taraba, L Klimek: Kinematic and dynamic 

analysis and distribution of stress for seven-item mechanism by means of the 

SolidWorks program, doi:10.1088/1757-899X/1199/1/012076, IOP, 

Materials Science and Engineering 2022, p. 9. 

[46] J Vavro jr., J Vavro, L Marček, M Taraba, L Klimek: Kinematic and dynamic 

analysis and distribution of stress for six-item mechanism by means of the 

SolidWorks program, doi:10.1088/1757-899X/1199/1/012047, IOP, 

Materials Science and Engineering 2022, p. 10. 

[47] Ján Vavro , Ján Vavro jr., Ľuboš Marček, Miloš Taraba, Lukáš Klimek , 

Pavol Čerňava, Jana Kuricová: Kinematic Analysis for Four-Item 

Mechanism by Means of the Matlab Program, EVM 2022, Ústí nad Labem, 

ČR 2022, ISBN 978-80-7561-355-4, počet strán 5. 

[48] Ján Vavro jr., Ján Vavro, Ľuboš Marček, Miloš Taraba, Lukáš Klimek , Pavol 

Čerňava, Jana Kuricová: Kinematic Analysis for Six-Item Mechanism by 

Means of the SolidWorks Program, EVM 2022, Ústí nad Labem, ČR 2022, 

ISBN 978-80-7561-355-4, počet strán 5. 

 



 145 

 [49] Ján Vavro , Ján Vavro jr., Ľuboš Marček, Miloš Taraba, Lukáš Klimek , 

Pavol Čerňava, Jana Kuricová: Kinematic and dynamic analysis for of the 

driving and timing units of the steam locomotive by means of the SolidWorks 

program, EVM 2023, Ústí nad Labem, ČR 2022, ISBN 978-80-7561-411-7, 

počet strán 8. 

[50] Ján Vavro jr, Ján Vavro, Ľuboš Marček, Miloš Taraba, Lukáš Klimek , Pavol 

Čerňava, Jana Kuricová: Kinematic Analysis for Six-Item Mechanism by 

Means of the SolidWorks Program, EVM 2023, Ústí nad Labem, ČR 2022, 

ISBN 978-80-7561-411-7, počet strán 8. 

 [51] ZIENKIEWICZ O. C.: The Finite Element Method in Engineering Science, 

McGraw Hill, New York 1971. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 146 

prof. Ing. Ján Vavro, CSc.  

(born in 1952), accomplished the university study of the second degree in 1977 at 

the Mechanical Engineering Faculty of the University of Transport in Žilina, 

currently University of Žilina. In 1988, he was awarded a CSc. (equivalent: PhD.)  

degree at the Faculty of Mechanical Engineering of the University of Žilina. In 

1995, he was qualified as a docent (lecturer professor) in the field of Applied 

Mechanics at the same faculty. In 2005, he was inaugurated at the Faculty of 

Mechanical Engineering at TU Košice in the field of Applied Mechanics, and in 

2006, he was appointed a professor in the given mentioned scientific field. Since 

1997, he has been working at the Faculty of Industrial Technologies in Púchov in 

the Department of Numerical Methods and Computational Modeling. He is the 

author of six monographs and co-author of 1 monograph, 2 university textbooks, 2 

scripts and more than 355 scientific and professional works in domestic and foreign 

journals and different scientific collections. He solves grant projects (as a principal 

investigator as well as participating member in research team), research tasks, 

including tasks for practice. In the scientific and research field, he deals with static 

and dynamic analysis of mechanical systems and their optimization from the point 

of view of their material properties. 

 

doc. Ing. Ján Vavro, PhD. 

(born in 1982), accomplished the university study of the second degree in 2006 at 

Faculty of Industrial Technology in Púchov, Alexander Dubček University of 

Trenčín. In 2009, he accomplished the third degree of university study at Faculty of 

Industrial Technology in Púchov and he gained the PhD. title in the study field: 

5.2.26 Materials. In 2014, he gained the scientific and pedagogical degree of 

Associate Professor (abbr: “Doc.”). Since 2009 he has been working in Department 

of Materials Engineering at Faculty of Industrial Technology in Púchov. He is the 

author of 3 monographs and co-author of 4 monographs, 2 university textbooks, 1 

e-learning work and more than 115 scientific and professional works in national 

and international journals or proceedings. He is the investigator of grant projects, 

research issues as well as practical issues. In the field of science and research, he 

has been investigating the whole complex of problems relating to the identification 

of material defects by means of modal analysis. His scientific and research work is 

also devoted to the static and dynamic analysis of mechanical body systems and 

their optimisation in the terms of their material properties. 

 

 

 

ISBN 978-80-908447-1-1 


